

Fig. 1. Fluorescence decay kinetics in air-saturated toluene. $\lambda_{exc} = 300 \text{ nm}$; $\lambda_{obs} = 680 \text{ nm}$

Fig.2. Stern-Volmer plot for the SubNc fluorescence quenching by 1-iodopropane in toluene, where *F* is the area under the fluorescence spectrum. From the slope $K_{SV} = 0.373$ and the singlet lifetime $\tau_S = 2.5$ ns, a quenching rate constant of $k_q^{1pr} = 1.47 \cdot 10^8$ M⁻¹s⁻¹ is calculated. The singlet-triplet energy gap is then calculated as $\Delta E_{ST_n} = 250.5 - 25.51 \cdot \log k_q^{1pr}$ according to Dreeskamp et al.¹²

Fig.3. Determination of the product of the triplet quantum yield times the triplet energy $(\Phi_T E_T)$ by laser-induced optoacoustic calorimetry. **Left**: Laser-energy dependence of the optoacoustic signal (difference of amplitudes between the first maximum and the first minimum) observed upon 355 nm laser flash photolysis of argon-saturated solutions of SubNc and the calorimetric reference 2-hydroxybenzophenone. Each data set corresponds to a solution of different absorbance. **Inset**: Typical optoacoustic signals for SubNc and 2HBP in toluene. **Right:** The energy-normalized amplitudes are plotted vs. the absorption factor (1-10⁻⁴). The ratio of the slopes of the new lines, α , is the fraction of absorbed energy released as heat by SubNc in the submicrosecond time scale, which is

related to the its photophysical properties as
$$\mathbf{a} = \frac{E_I - \Phi_F E_F - \Phi_T E_T}{E_I}$$
,

where E_{λ} is the molar energy of the laser photons (355 nm), and $\Phi_{\rm F}$ and $E_{\rm F}$ the quantum yield and average energy of fluorescence, respectively. $\Phi_{\rm T}E_{\rm T}$ is readily calculated from this equation and is combined with the $E_{\rm T}$ value to yield $\Phi_{\rm T}$.

Fig.4. Laser-energy dependence of the zero-time absorbance change for opticallymatched solutions of SubNc (in toluene, $\lambda_{obs} = 436$ nm) and benzophenone (BP, in benzene, $\lambda_{obs} = 506$ nm). The slopes of the straight lines are in the same ratio as the product of the triplet quantum yield times the triplet-minus-singlet absorption coefficient ($\Phi_T \Delta \epsilon_{T-S}$). Using the value of $\Phi_T \Delta \epsilon_{T-S} = 6300 \text{ M}^{-1} \text{ cm}^{-1}$ at 506 nm for BP and the Φ_T value for SubNc obtained above, the value of $\Delta \epsilon_{T-S}$ for SubNc at 436 is readily calculated.

Fig.5. (**Top**) Triplet decay traces in argon, air- and oxygen-saturated toluene solutions of SubNc. $\lambda_{exc} = 355$ nm; $\lambda_{obs} = 436$ nm. (**Bottom**) Stern-Volmer plot for the triplet quenching by oxygen in toluene. The rate constant k_q^{02} was determined from the equation

$$k_{obs} = k_T(0) + k_q^{O2}[O_2],$$

where $k_{\rm T}(0)$ is the triplet decay rate constant observed in argon-saturated solutions.

Fig.6. Determination of the singlet oxygen $O_2({}^1\Delta_g)$ quantum yield, Φ_{Δ} , by time-resolved near-IR emission spectroscopy (TRNIR). (**Top**) Typical $O_2({}^1\Delta_g)$ phosphorescence signal observed ($\lambda_{obs} = 1270$ nm) upon 355 nm laser photolysis of SubNc in air-saturated toluene. The decay is monoexponential with lifetime 29 µs. (**Bottom**) The laser energynormalized signal amplitude for SubNc and for the reference phenalenone (PN) is plotted as a function of the absorption factor (1-10^{-A}) for a series of solutions with different absorbance. The slopes of this lines are in the same ratio as the Φ_{Δ} values for the two compounds.