Photodynamics of excitation energy transfer in self-assembled

dyads. Evidence for back transfer

Isabelle Leray, Bernard Valeur, Dharam Paul, Emilie Regnier, Matthieu Koepf, Jennifer A.

Wytko, Corinne Boudon, and Jean Weiss

Table of Contents

Experimental procedures	S2
Figure S1. UV-visible spectra of ZnP , PH ₂ P , and dyad ZnP- PH ₂ P .	S8
Figure S2. UV-visible titration of ZnP with PH₂P :	S8
Figure S3. UV-visible spectra of ZnP , BH ₂ P , and dyad ZnP- BH ₂ P .	S9
Figure S4. UV-visible titration of ZnP with BH₂P :	S9
Figure S5. UV-visible spectra of ZnP , EH ₂ P , and dyad ZnP- EH ₂ P .	S10
Figure S6. UV-visible titration of ZnP with EH₂P :	S10
Figure S7. NMR titration of ZnP with EH₂P	S11
Figure S8. Typical voltammograms of dyad ZnP-PH₂P and its components.	S11

Experimental

General. Compounds **1**, **3**, and **5** were prepared according to references 6, 7, and 9, respectively. Reagents and solvents of reagent-grade were purchased and used without further purification. NEt₃ was distilled under argon over KOH prior to use. Anhydrous Na₂SO₄ was used as drying agent after aqueous workup. Evaporation and concentration in vacuo were carried out at H₂O-aspirator pressure. Column chromatography was performed with silica gel (0.063-0.200 mm) from Merck. Melting points are uncorrected. Mass spectra were recorded using a nitrobenzyl alcohol matrix. Elemental analyses were performed by le Service de Microanalyse de l'Institut Universitaire de Technologie, Strasbourg, Sud.

1-{[2-(Trimethylsilyl)ethoxy]methyl}-2-[2-(4-bromophenyl)ethynyl]imidazole (2). To a degassed solution of 1-{[2-(trimethylsilyl)ethoxy]methyl}2-(ethynyl)imidazole (1) (1.50 g, 6.76 mmol) and *p*-bromoiodobenzene (1.90 g, 6.76 mmol) in 20 mL of dry NEt₃, PdCl₂(PPh₃)₄ (94 mg, 0.14 mmol) and CuI (13 mg, 0.07 mmol) were added. The mixture was degassed then heated at 55° for 6 h under argon. Solvent was removed in vacuo. The crude product was dissolved in CH₂Cl₂ and washed with sat. NH₄Cl(aq). The organic phase was dried, filtered and evaporated to dryness. Column chromatography over silica gel (EtOAc/hex : 1/1) afforded compound **2** (2.16 g, 5.73 mmol, 85%) as a yellow solid. ¹H NMR (300 MHz, CDCl₃) δ =7.51 (d, J = 8.1 Hz, 2H), 7.41 (d, J = 8.1 Hz, 2H), 7.26 (d, J=1.1 Hz, 2H), 7.19 (br s, 1H), 5.44 (s, 2H), 3.57 (t, J = 8.1 Hz, 2H), 0.92 (t, J = 8.1 Hz, 2H), -0.04 (s, 9H).

Porphyrin boronic ester 3. Pyrrole (1.34 g, 20 mmol) was added to a degassed solution of 4-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)benzaldehydeⁱ (1.09 g, 5 mmol) and benzaldehyde (1.56 g, 15 mmol) in 0.8 L of CHCl₃. Boron trifluoride etherate (0.75 ml, 6 mmol) was added via syringe. the resulting yellow solution was stirred under argon, in the absence of light, for 2 h. DDQ (3.4 g, 15 mmol) was added and the mixture was stirred for 2 h. After the addition of triethylamine (2 eq.), solvent was removed in vacuo. Two successive column chromatographies over SiO₂ (CH₂Cl₂, up to 5% MeOH) afforded the desired porphyrin boronic ester (182 mg, 0.25 mmol, 5%). This compound was used without further purification. ¹H NMR (300 MHz, CDCl₃) δ =8.85 (br s, 8H), 8.22 (m, 10H), 7.76 (m, 9H), 3.95 (s, 4H), 1.18 (s, 6H), -2.77 (s, 2H). FAB MS: calc for C₄₉H₃₉BN₄O₂ m/z = 726.7; found 727.1 (100%).

BH₂P. To a degassed solution of **2** (40 mg, 0.11 mmol) in 20 mL of toluene, the following reagents were added successively, degassing after each addition: $Pd(PPh_3)_4$ (5 mg, 4.3 umol), degassed 2M Na₂CO₃(aq) (1 mL), and a degassed solution of porphyrin boronic ester **3** (50 mg, 69 µmol) in MeOH (5mL). The reaction mixture was heated at 80° for 24 h. After cooling, the mixture was washed with 50 mL of 2M Na₂CO₃(aq) containing 5 mL of conc. NH₃ (aq). The organic layer was dried, filtered, and solvents were removed in vacuo. Purification by column chromatography over SiO₂ (CH₂Cl₂ with 0-10% gradient of EtOAc) afforded an enriched fraction of the coupled product **4**. This product, which was contaminated with unreacted compound **2**, was used without further purification for the next step.

A solution of 4 in THF (10 mL) and NBu_4F (1 M in THF, 0.5 ml, 0.5 mmol) was heated at 55° under argon for 3 h. Solvent was removed in vacuo, then the residue was taken

ⁱ I. M. Dixon, J.-P. Collin, J.-P. Sauvage, L. Flamigni, *Inorg. Chem.* 2001, 40, 5507-5517.

in CH₂Cl₂, washed with Na₂CO₃(aq) and then with brine. To remove the 2-[2-(4bromophenyl)ethynyl]imidazole contaminate, the organic layer was acidified with 5N HCl(aq). The organic phase was then basified (pH 8) with 2M Na₂CO₃(aq) dried, filtered and evaporated to dryness. Column chromatography over silica gel (CH₂Cl₂/EtOAc: 1/4) and recrystallization from MeOH gave porphyrin **BH₂P** in 37% overall yield (20 mg, 26 µmol) based on starting material **3**. Mp. decomposes >250°. ¹H NMR (300 MHz, CDCl₃): δ =9.38 (br s, 1H), 8.91 (d, J = 4.4 Hz, 2H), 8.86 (m, 6H), 8.31 (d, J = 7.7 Hz, 2H), 8.22 (m, 6H), 8.00 (d, J = 7.7 Hz, 2H), 7.93 (d, J = 8.1 Hz, 2H), 7.77 (m, 11H), 7.23 (s, 1H), 7.07 (s, 1H), -2.75 (s, 2H). UV-vis (CH₂Cl₂) : 307 (32200), 373 (20000), sh 402 (73200), 419 (387400), 516 (14500), 551 (7500), 592 (4300), 646 (3600). FAB MS: calc for C₅₅H₃₆N₆ m/z = 780.9; found 781.5 (100%). E.A.: found (calc) for C₅₅H₃₆N₆ + CH₂Cl₂ + H₂O: C 75.98 (76.10), H 4.75 (4.65), N 9.46 (9.51).

5,15-Bis[3,5-(di-t-butyl)phenyl]-10-(m-xylyl)porphyrin (6). To a degassed solution of the 10-bromo-5,15-bis[3,5-(di-t-butyl)phenyl]porphyrin (**5**) (172 mg, 0.22 mmol) in 30 mL of toluene, the following reagents were successively added : $Pd(PPh_3)_4$ (12 mg, 0.01 mmol), a degassed solution of 2M Na₂CO₃(aq) (0.35 mL), and a degassed methanolic solution (0.5 mL) of the xylyl boronic ester (43 mg, 0.29 mmol). The reaction mixture was refluxed under argon for 36 h. After cooling, the mixture was partitioned between toluene (100 mL) and a 2M aqueous solution of Na₂CO₃ (50 mL) containing 5 mL of conc. NH₄OH. The organic layer was dried, filtered, and solvents were removed in vacuo. Purification by column chromatography over SiO₂ (CH₂Cl₂: hex:1/5, then 1/4) afforded an enriched fraction of porphyrin (**6**) (160 mg, 0.20 mmol, 92%). This product was used without further purification for the next step. ¹H NMR (300 MHz, CDCl₃): δ =10.21 (s, 1H), 9.34 (d, J=4.7 Hz, 2H), 9.06

(d, J=4.7 Hz, 2H), 8.93 (d, J=4.7 Hz, 2H), 8.90 (d, J=4.7 Hz, 2H), 8.11 (d, J=1.8 Hz, 4H), 7.84 (s, 2H), 7.81 (t, J=1.8 Hz, 2H), 7.40 (s, 1H), 2.60 (s, 6H), 1.55 (s, 36H), -2.92 (s, 2H).

5-Iodo-10,20-bis[3',5'-(di-t-butyl)phenyl]-15-(*m***-xylyl)porphyrin (7).** A solution of iodine (61 mg, 0.24 mmol) in 8 mL CHCl₃ was added to a light-protected solution of [bis(trifluoroacetoxy)iodo]benzene (129 mg, 0.30 mmol) in 15 ml of CHCl₃. Pyridine (6 pipette drops) was added to this solution, causing decoloration to light yellow. This solution was added dropwise over 25 min to a light-protected solution of porphyrin **6** (160 mg, 0.20 mmol) in 150 ml of CHCl₃. After stirring for 2 h at r.t., the solution was washed with sat. Na₂S₂O₃(aq) (2 x 80 mL), dried, filtered, and evaporated in vacuo. The crude product was purified by column chromatography (SiO₂, hex/CH₂Cl₂: 1/3) to afford the iodoporphyrin **7** (144 mg, 0.16 mmol) in 79% yield. Mp: >300°. ¹H NMR (300 MHz, CDCl₃): δ =9.67 (d, J=4.7 Hz, 2H), 8.89 (d, J=4.6 Hz, 2H), 8.81 (d, J=4.6 Hz, 2H), 8.80 (d, J=4.6 Hz, 2H), 8.04 (d, J=1.8 Hz, 4H), 7.81 (t, J=1.8 Hz, 2H), 7.79 (s, 2H), 7.38 (s, 1H), 2.58 (s, 6H), 1.54 (s, 36H), - 2.67 (s, 2H). UV-visible (CH₂Cl₂): 304 (23100), 327 (20300), sh 379 (33300), 490 (5900), 522 (24000), 558 (16500), 598 (7600), 655 (8900). E.A.: found (calc) for C₅₆H₆₁N₄I: C 73.05 (73.35), H 6.53 (6.71), N 6.28 (6.11).

5-Iodo-10,20-bis[**3**',**5**'-(**di-t-butyl**)**phenyl**]-**15**-(*m*-**xylyl**)**porphyrinato zinc**(**II**) (**Zn-7**). A solution of iodoporphyrin 7 (166 mg, 0.18 mmol) and zinc(II) acetate (397 mg, 1.8 mmol) in CHCl₃/MeOH (45mL/10 mL) was refluxed for 1.5 h. After cooling, the solution was washed with water (3 x 50 mL), dried, filtered, and solvent removed in vacuo. Recrystallization from CH₂Cl₂/MeOH gave violet needles of the zinc porphyrin **Zn-7** (159 mg, 0.17 mmol, 95%). If necessary, the crude product could be purified over a column of Al₂O₃ (hex/CH₂Cl₂: gradient from 1/1 to 1/2). ¹H NMR (300 MHz, CDCl₃): δ =9.81 (d, J=4.7 Hz, 2H), 9.01 (d, J=4.7 Hz,

2H), 8.95 (d, J=4.7 Hz, 2H), 8.93 (d, J=4.7 Hz, 2H), 8.06 (d, J=1.8 Hz, 4H), 7.81 (t, J=1.8 Hz, 2H), 7.80 (s, 2H), 7.39 (s, 1H), 2.59 (s, 6H), 1.54 (s, 36H).

EH₂P. The catalyst PdCl₂(PPh₃)₂ (1 mg, 1 mmol) was added to a degassed solution of zinc iodoporphyrin Zn-7 (75 mg, 0.08 mmol) in 10 mL of distilled triethylamine. SEM-2-(2ethynyl)imidazole (20 mg, 0.09 mmol) in 2 mL of toluene, and then CuI (0.3 mg, 1.5 µmol) were successively added, degassing between each addition. The reaction mixture was heated at 50° under argon for 42 h. Solvent was removed in vacuo. The residue was dissolved in dichloromethane and washed with sat NH₄Cl(aq). The organic layer was dried and filtered. Several drops of trifluoroacetic acid was added to the blue-violet solution of Zn-8. After stirring for 30 min, the solution was washed twice with 1M Na₂CO₃ (aq). The aqueous layer was extracted with dichloromethane and the combined organic phases were dried, filtered, and evaporated in vacuo. The deep pink solid was enriched by column chromatography over SiO₂ (CH₂Cl₂) to afford **8** (45 mg, 0.05 mmol, 58%). ¹H NMR (300 MHz, CDCl₃): δ=9.53 (d, J=4.9 Hz, 2H), 8.81 (d, J=4.9 Hz, 2H), 8.81 (d, J=4.8 Hz, 2H), 8.75 (d, J=4.8 Hz, 2H), 8.01 (d, J=1.8 Hz, 4H), 7.78 (m, 4H), 7.54 (d, J=1 Hz, 1H), 7. (d, J=1 Hz, 1H), 7.38 (s, 1H), 5.89 (s, 2H), 3.63 (t, J=8.3 Hz, 2H), 2.57 (s, 6H), 1.50 (s, 36H), 0.86 (m, 2H), -2.32 (s, 2H). This compound was dissolved in THF (15 mL) and treated with Bu₄NF (1 M in THF, 4 ml, 4 mmol). This degassed solution was heated at 55° for 2.5 h under argon. Solvent was removed in vacuo, then the residue was taken in CH_2Cl_2 , washed with $Na_2CO_3(aq)$ and then with brine. The organic layer was dried, filtered and evaporated to dryness. Column chromatography over silica gel (CH₂Cl₂/hex, 4/1) gave the desired compound (EH₂P) in 56% yield (24 mg, 25 umol). Mp. >300°. ¹H NMR (300 MHz, CDCl₃): δ =9.80 (br s, 1H), 9.71 (d, J=4.7 Hz, 2H), 8.95 (d, J=4.7 Hz, 2H), 8.80 (m, 4H), 8.07 (d, J=1.8 Hz, 4H), 7.82 (t, J=1.8 Hz, 2H), 7.80 (s, 2H), 7.39 (s, 2H), 7.18 (s, 1H), 2.59 (s, 6H), 1.55 (s, 36H), -2.28 (s, 2H).

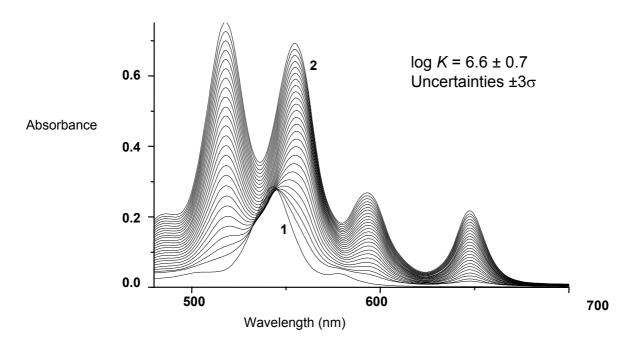
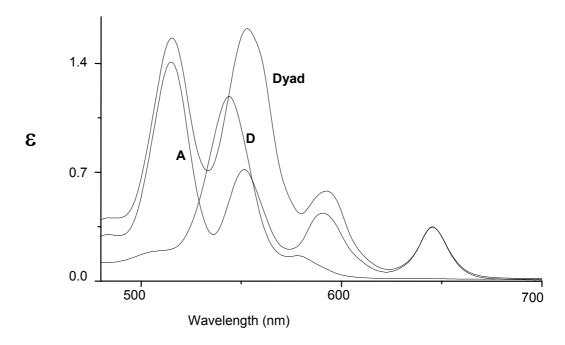
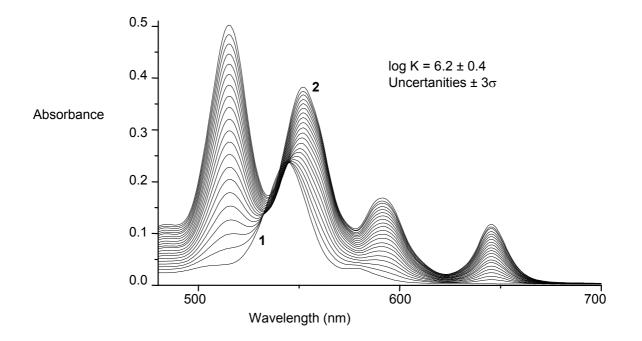
UV-vis (CH₂Cl₂) : 304 (124000), sh 413 (56600), 435 (242600), sh 497 (3700), 534 (8700),

578 (18800), 608 (4800), 667 (8200). FAB MS: calc for $C_{61}H_{64}N_6$ m/z = 881.2; found 881.6

(100%). E.A. found (calc) for $C_{61}H_{64}N_6 + H_2O + 0.5CH_2Cl_2$: C78.88 (78.44), H 6.80 (7.17),

N 9.44 (8.92).

Figure S1. Q band region of the UV-Visible spectra of the donor (**D**) **ZnP**, acceptor (**A**) **PH₂P**, and dyad **ZnP/PH₂P** in CH₂Cl₂ + 0.01% 2,6-lutidine. ε in (M⁻¹cm⁻¹)x 10⁴

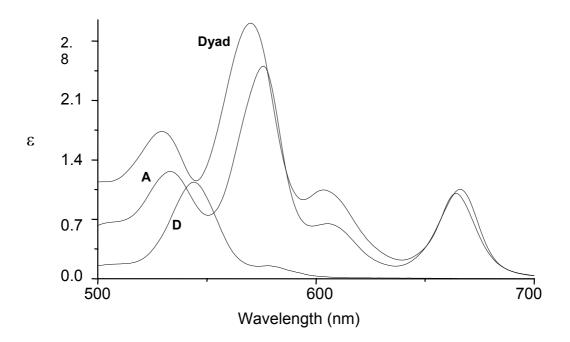

Figure S2. UV-visible titration (Q band region) of ZnP with PH₂P, to form dyad ZnP/PH₂P in CH₂Cl₂ + 0.01% 2,6-lutidine. [ZnP]_{tot} = 1.18×10^{-5} M; [PH₂P]_{tot} = 1.18×10^{-5} M; (1): [PH₂P]_{tot/}[ZnP]_{tot} = 0, (2) [PH₂P]_{tot/}[ZnP]_{tot} = 1.64.

Figure S3. Q band region of the UV-Visible spectra of donor (**D**) **ZnP**, acceptor (**A**) **BH**₂**P**, and dyad **ZnP/BH**₂**P** in CH₂Cl₂ + 0.01% 2,6-lutidine. ε in (M⁻¹cm⁻¹)x 10⁴.

Figure S4. UV-visible titration (Q band region) of **ZnP** with **BH**₂**P**, to form dyad **ZnP/BH**₂**P** in CH₂Cl₂ + 0.01% 2,6-lutidine. [**ZnP**]_{tot} = 1.01 x 10⁻⁵ M; [**BH**₂**P**]_{tot} = 7.35 x 10⁻⁵ M; (1): [**BH**₂**P**]_{tot/}[**ZnP**]_{tot} = 0, (2) [**BH**₂**P**]_{tot/}[**ZnP**]_{tot} = 1.68.

Figure S5. Q band region of the UV-Visible spectra of donor (**D**) **ZnP**, acceptor (**A**) **EH**₂**P**, and dyad **ZnP/EH**₂**P** in CH₂Cl₂ + 0.01% 2,6-lutidine. ε in (M⁻¹cm⁻¹)x 10⁴.

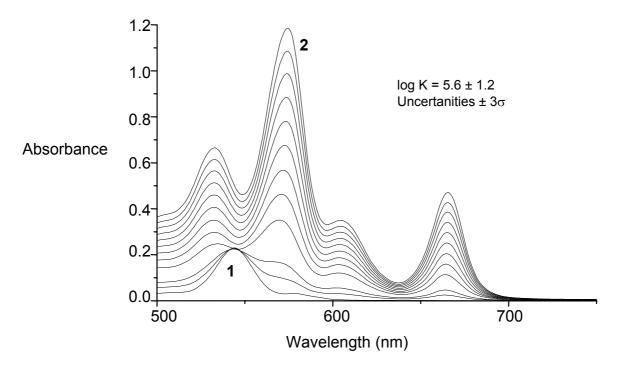
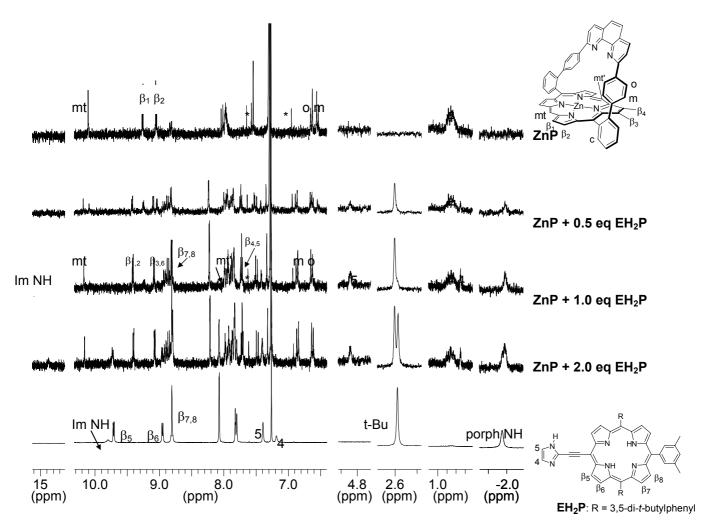
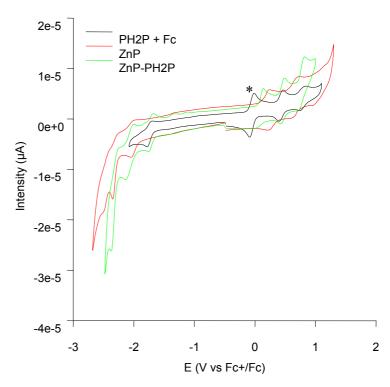




Figure S6. UV-visible titration (Q band region) of ZnP with EH₂P, to form dyad ZnP/EH₂P in CH₂Cl₂ + 0.01% 2,6-lutidine. [ZnP]_{tot} = 1.01 x 10⁻⁵ M; [EH₂P]_{tot} = 2.55 x 10⁻⁴ M; (1): [EH₂P]_{tot/}[ZnP]_{tot} = 0, (2) [EH₂P]_{tot/}[ZnP]_{tot} = 2.29.

Figure S7. 300 MHz ¹H NMR titration of **ZnP** (4.6×10^{-4} M) with **EH₂P** in CDCl₃, 298 K. * = rotation band; # = grease.

Figure S8. Typical voltammograms of dyad **ZnP-PH₂P** and its components. Conditions: CH₂Cl₂, (*t*-Bu)₄NPF₆ 0.1M, 298K, 0.1 V/s, Glassy Carbon Working Electrode, Fc+/Fc as reference (*).

