Synthesis of Tricyclic Vinylcyclobutanes and their Application in Photoinduced Electron Transfer Chemistry

Juliane Grota and Jochen Mattay*

Organische Chemie I, Fakultät für Chemie, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany Fax: +49(521)1066417; Tel: +49(521)1062072; E-mail: mattay@uni-bielefeld.de

Supplementary Materials

Synthesis of Vinylcyclobutanes 1a-j by Peterson olefination of tricyclic ketones 2a-j

The synthesis of tricyclic ketones **2a-j** has been reported separately.^{1,2}

General procedure A of synthesis of (trimethylsilyl)methyllithium $(4)^3$: To a refluxing suspension of lithium sand (982 mg, 141 mmol) in 75 mL *n*-pentane under argon atmosphere (cloromethyl)trimethylsilane (8.66 g, 71 mmol) was added dropwise. The mixture was heated under reflux for 8 h and cooled to r.t. After 12 h without stirring the mixture had separated into a colorless solution and a purple residue. The colorless solution of 4 was taken out with a syringe immediately before use.

General procedure B of synthesis of tricyclic β **-trimethylsilylalcohols 3a-j³:** 17 mL of the solution of **4**, made according to procedure A, were diluted with 50 mL anhyd Et₂O. A solution of the ketone (3 mmol) in 10 mL anhyd Et₂O was added dropwise. The mixture was heated under reflux for 3-6 h. Conversion was controlled by GC. Under cooling to 0°C aq NH₄Cl (25%, 10 mL) was added. After addition of H₂O (100 mL) the mixture was extracted with Et₂O (3 x 75 mL). The combined organic layers were washed with H₂O (50 mL) and dried (Na₂SO₄). The solvents were evaporated under reduced pressure. The residue was purified by Kugelrohr destillation and flash chromatography (cyclohexane).

General procedure C of synthesis of vinylcyclobutanes 1a-j^4: A suspension of KH in paraffin (1 g) was washed under an argon atmosphere with *n*-pentane (2 x 10 mL) and suspended in anhyd THF (15 mL). A solution of alcohol **3** (1.5 mmol) in anhyd THF (10 mL) was added dropwise. After stirring at r.t. for 2 h the mixture was added to cold aq NH₄Cl (10%, 50 mL) overlaid with Et₂O (100 mL). The organic layer was separated and dried (MgSO₄). The solvents were evaporated under reduced pressure. The residue was purified by Kugelrohr destillation and flash chromatography (cyclohexane).

cis,anti,cis-3-[(Trimethylsilyl)methyl]-tricyclo[5.3.0.0^{2,6}]decan-3-ol (3a)

3a was obtained from 2a according to procedure B.

Yield: 81 %, colorless oil.

IR (film): 3488, 2948, 2870, 1465, 1447, 1415, 1361, 1287, 1246, 1175, 1150, 1118, 1056, 1043, 1018, 996, 891, 839, 762, 688 cm⁻¹.

¹H-NMR (C₆H₆): $\delta = 0.169$ (s, 9 H, Si(CH₃)₃), 1.067 (s, 1 H, OH), 0.728 (d, 1 H, J = 14.8 Hz, 11-H), 0.811 (d, 1 H, J = 14.8 Hz, 11-H), 1.327-1.435 (m, 3 H), 1.457-1.529 (m, 2 H), 1.546-1.660 (m, 3 H), 1.676-1.738 (m, 2 H), 1.790 (ddd, 1 H, J = 6.8 Hz, 6.8 Hz, 3.2 Hz), 1.812-1.880 (m, 1 H), 1.932 (ddd, 1 H, J = 7.0 Hz, 7.0 Hz, 3.0 Hz), 2.264 (ddd, 1 H, J = 6.9 Hz, 6.9 Hz, 3.6 Hz).

¹³C-NMR (C_6D_6): = 0.85 (Si(CH₃)₃), 25.50 (CH₂), 30.30 (CH₂), 30.59 (CH₂), 33.41 (CH₂), 33.63 (CH₂), 36.09 (CH), 40.44 (CH₂), 40.69 (CH), 42.29 (CH), 53.21 (CH), 81.97 (C_q, C-3).

GC/MS (EI, 70 eV): m/z (%) = 238 (0.9) [M⁺], 155 (10), 115 (33), 91 (15), 80 (13), 79 (21), 75 (72), 74 (12), 73 (100) [Si(CH₃)₃⁺], 67 (17), 66 (11), 45 (16), 41 (10).

HRMS: *m/z* calcd for C₁₄H₂₆OSi (M⁺), 238.17529; found, 238.17556.

cis,anti,cis-6-Methyl-3-[(trimethylsilyl)methyl]-tricyclo[5.3.0.0^{2,6}]decan-3-ol (3c)

3c was obtained from 2c according to procedure B.

Yield: 82 %, colorless oil.

Supplementary Material (ESI) for Photochemical & Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2005

IR (film): 3491, 2948, 2867, 1730, 1448, 1415, 1373, 1289, 1246, 1220, 1155, 1107, 1059, 1021, 1006, 883, 838, 689 cm⁻¹.

¹H-NMR (C_6D_6): $\delta = 0.181$ (s, 9 H, Si(CH₃)₃), 0.754 (dd, 1 H, J = 14.8 Hz, 1.1 Hz, 11-H), 0.850 (s, 3 H, 12-H), 0.870 (d, 1 H, J = 14.8 Hz, 11-H), 1.018 (s, 1 H, OH), 1.260 (dddd, 1 H, J = 12.9 Hz, 12.9 Hz, 7.7 Hz, 7.1 Hz), 1.327 (d, 1 H, J = 3.9 Hz), 1.353-1.420 (m, 3 H), 1.462 (dd, 1 H, J = 12.4 Hz, 6.2 Hz), 1.559 (ddddd, 1 H, J = 12.5 Hz, 12.5 Hz, 12.4 Hz, 6.2 Hz, 6.2 Hz), 1.655-1.721 (m, 3 H), 1.917 (dd, 1 H, J = 10.4 Hz, 10.4 Hz), 1.968 (ddd, 1 H, J = 7.7 Hz, 7.7 Hz, 7.7 Hz), 2.207 (ddd, 1 H, J = 7.1 Hz, 7.1 Hz, 4.2 Hz).

¹³C-NMR (C_6D_6):8 = 0.97 (CH₃, Si(CH₃)₃), 21.16 (CH₃, C-12), 26.78 (CH₂), 28.56 (CH₂), 30.52 (CH₂), 33.04 (CH₂), 34.98 (CH), 40.08 (CH₂), 40.66 (CH₂), 41.02 (C_q , C-6), 45.19 (CH), 60.18 (CH), 82.09 (C_q , C-3).

GC/MS (EI, 70 eV): m/z (%) = 252 (<1) [M⁺], 115 (49), 97 (28), 91 (21), 79 (40), 77 (15), 75 (87), 73 (100) [Si(CH₃)₃⁺], 67 (20), 66 (15), 59 (10), 55 (13), 45 (20), 43 (10), 41 (14).

HRMS: *m/z* calcd for C₁₅H₂₈OSi (M⁺), 252.1909; found, 252.1910.

cis,syn,trans-6-Methyl-3-[(trimethylsilyl)methyl]-tricyclo[5.4.0.0^{2,6}]undecan-3-ol (3d)

3d was obtained from 2d according to procedure B.

Yield: 87 %, colorless oil.

IR (film): 3503, 2931, 2858, 1444, 1247, 999, 839, 687, 664 cm⁻¹.

¹H-NMR (C_6D_6): $\delta = 0.169$ (s, 9 H, Si(CH₃)₃), 0.921 (s, 2 H, 12-H), 1.074 (s, 1 H, OH), 1.111 (s, 3 H, 13-H), 1.192-1.237 (m, 3 H), 1.288 (ddd, 1 H, J = 12.8 Hz, 10.0 Hz, 7.4 Hz), 1.506-1.534 (m, 1 H), 1.561 (ddd, 1 H, J = 12.8 Hz, 7.0 Hz, 3.6 Hz), 1.650-1.739 (m, 5 H), 1.779-1.818 (m, 1 H), 1.847 (ddd, 1 H, J = 13.0 Hz, 7.1 Hz, 3.6 Hz), 2.000 (d, 1 H, J = 7.4 Hz), 2.060 (ddd, 1 H, J = 13.0 Hz, 10.0 Hz, 7.1 Hz).

¹³C-NMR (C_6D_6): $\delta = 0.81$ (3 C, Si(CH₃)₃), 20.05, 26.77, 28.22, 28.66, 29.79, 34.76, 37.51, 41.16, 46.04, 47.92, 50.58, 61.48, 83.77 (C-3).

GC/MS (EI, 70 eV): m/z (%) =: 266 (<1) [M⁺], 248 (3) [M⁺-H₂O], 233 (2) [M⁺-H₂O-CH₃], 136 (14), 115 (35), 107 (10), 105 (10), 97 (31), 93 (14), 91 (28), 81 (12), 79 (25), 77 (10), 75 (62), 74 (12), 73 (100) [Si(CH₃)₃⁺], 67 (13), 55 (16), 45 (19), 43 (10), 41 (17).

HRMS: *m/z* calcd for C₁₆H₃₀OSi (M⁺), 266.20659; found, 266.20662.

6-Methyl-3-[(trimethylsilyl)methyl]-tricyclo[n.m.0.0^{2,n+1}]alkan-3-ols (3b,e-j)

3b,e-f were obtained from **2b,e-f** according to procedure B in good yields (60-99 %) as colorless oils. Characterization was performed using GC/MS.

*cis-anti-cis-*3-Methylen-tricyclo[5.3.0.0^{2,6}]decane (1a)

1a was obtained from 3a according to procedure C.

Yield: 82 %, colorless oil.

IR (film): 3076, 2937, 2857, 1658, 1466, 1439, 1249, 1173, 1143, 1111, 1058, 1028, 1007, 880, 838, 664 cm⁻¹.

¹H-NMR (C_6D_6): $\delta = 1.285-1.410$ (m, 2 H), 1.455-1.530 (m, 2 H), 1.549-1.628 (m, 2 H), 1.659-1.739 (m, 2 H), 1.998 (ddd, 1 H, J = 7.0 Hz, 7.0 Hz, 3.5 Hz), 2.068 (ddd, 1 H, J = 6.8 Hz, 6.8 Hz, 3.5 Hz), 2.192- 2.261 (m, 2 H), 2.301 (dd, 1 H, J = 6.6 Hz, 2.7 Hz), 2.599-2.682 (m, 1 H), 4.827 (dd, 1 H, J = 1.9 Hz, 1.9 Hz, 11-H), 4.886 (dd, 1 H, J = 2.1 Hz, 2.1 Hz, 11-H).

¹³C-NMR (C_6D_6): δ = 25.27 (CH₂), 32.79 (CH₂, 2 C), 33.43 (CH₂), 33.54 (CH₂), 42.22 (CH), 42.87 (CH), 43.68 (CH), 48.13 (CH), 104.20 (CH₂, C-11), 157.49 (C_q , C-3).

 $\begin{array}{l} GC/MS \; (EI, \ 70 \; eV): \ m/z \; (\%) = 148 \; (13) \; [M^+], \; 133 \; (10), \; 120 \; (4), \; 119 \; (7), \; 117 \; (1), \; 107 \; (3), \; 106 \; (8), \; 105 \; (12), \; 103 \; (1), \; 93 \; (4), \\ 92 \; (7), \; 91 \; (25), \; 82 \; (1), \; 81 \; (21), \; 79 \; (37), \; 79 \; (100), \; 78 \; (3), \; 77 \; (28), \; 69 \; (1), \; 68 \; (3), \; 67 \; (27), \; 66 \; (8), \; 65 \; (21), \; 63 \; (5), \; 62 \; (1), \; 59 \; (1), \; 58 \; (4), \; 55 \; (5), \; 54 \; (3), \; 53 \; (14), \; 52 \; (8), \; 51 \; (11), \; 50 \; (3), \; 42 \; (2), \; 41 \; (24), \; 40 \; (5), \; 39 \; (27), \; 29 \; (4), \; 27 \; (13). \end{array}$

HRMS: m/z calcd for $C_{11}H_{16}$ (M⁺), 148.12520; found, 148.12520.

cis,syn,cis-6-Methyl-3-methylen-tricyclo[5.3.0.0^{2,6}]decane (1b)

1b was obtained from 3b according to procedure C.

Yield: 94 %, colorless oil.

IR (film): 3075, 2949, 2862, 1449, 880, 664 cm⁻¹.

Supplementary Material (ESI) for Photochemical & Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2005

¹H-NMR (C₆D₆): $\delta = 1.093 - 1.153$ (m, 1 H), 1.145 (s, 3 H, 12-H), 1.321 - 1.611 (m, 5 H), 1.724 - 1773 (m, 1 H), 1.730 (ddd, 1 H, J = 13.4 Hz, 8.9 Hz, 6.8 Hz), 2.265 - 2.429 (m, 3 H), 2.607 (ddddd, 1 H, J = 9.7 Hz, 1.9 Hz, 1.9 Hz, 1.9 Hz, 1.9 Hz, 1.9 Hz), 2.741 (dddd, 1 H, J = 9.0 Hz, 9.0 Hz, 9.0 Hz, 8.9 Hz, 2.7 Hz), 4.742 (dddd, 1 H, J = 2.0 Hz, 2.0 Hz, 2.0 Hz, 2.0 Hz, 11-H), 5.032 (dddd, 1 H, J = 2.0 Hz, 2.0 Hz, 2.0 Hz, 2.0 Hz, 11-H).

¹³C-NMR (C_6D_6): $\delta = 27.40$ (CH₂), 27.77 (CH₂), 28.04 (CH₂), 29.69 (CH₃, C-12), 33.07 (CH₂), 36.11 (CH₂), 36.31 (CH), 45.22 (C_q , C-6), 47.04 (CH), 50.13 (CH), 107.09 (CH₂, C-11), 154.33 (C_q , C-3).

GC/MS (EI, 70 eV): m/z (%) = 162 (9) [M⁺], 147 (62) [M⁺-CH₃], 134 (25), 133 (35), 120 (16), 119 (27), 107 (15), 106 (24), 105 (50), 95 (14), 94 (64), 93 (29), 92 (17), 91 (64), 81 (10), 80 (18), 79 (100), 78 (11), 77 (32), 67 (25), 65 (15), 55 (16), 53 (20), 51 (12), 41 (35), 39 (32), 29 (11), 27 (23).

HRMS: m/z calcd for C₁₂H₁₈ (M⁺), 162.14085; found, 162.14059.

cis,anti,cis-6-Methyl-3-methylen-tricyclo[5.3.0.0^{2,6}]decane (1c)

1c was obtained from 3c according to procedure C.

Yield: 87 %, colorless oil.

IR (film): 3076, 2947, 2859, 1438, 1248, 879, 837 cm⁻¹.

¹H-NMR (C_6D_6): $\delta = 0.857$ (s, 3 H, 12-H), 1.203-1.284 (m, 1 H, 8-H), 1.354 (dd, 1 H, J = 7.1 Hz, 7.1 Hz, 10-H), 1.426 (ddd, 1 H, J = 12.1 Hz, 12.1 Hz, 7.7 Hz, 5-H), 1.503-1.618 (m, 3 H, 5-H, 9-H, 10-H), 1.639-1.694 (m, 2 H, 8-H, 9-H), 1.905 (dddd, 1 H, J = 3.9Hz, 0.9 Hz, 0.9 Hz, 0.9 Hz, 2-H), 2.103 (dd, 1 H, J = 7.5 Hz, 7.5 Hz, 7-H), 2.214 (ddd, 1 H, J = 7.3 Hz, 7.2 Hz, 3.8 Hz, 1-H), 2.249 (dddddd, 1 H, J = 14.5 Hz, 7.7 Hz, 2.0 Hz, 1.0 Hz, 1.0 Hz, 1.0 Hz, 4-H), 2.672 (dddddd, 1 H, J = 14.4 Hz, 11.9 Hz, 8.1 Hz, 2.5 Hz, 2.5 Hz, 1.1 Hz, 4-H), 4.769 (ddddd, 1 H, J = 2.5 Hz, 1.7 Hz, 0.9 Hz, 0.9 Hz, 0.9 Hz, 11-H), 4.817 (ddd, 1 H, J = 2.1 Hz, 2.1 Hz, 1.0 Hz, 1.0 Hz, 11-H).

¹³C-NMR (C_6D_6): $\delta = 20.39$ (CH₃, C-12), 26.72 (CH₂, C-9), 28.69 (CH₂, C-8), 32.78 (CH₂, C-10), 33.38 (CH₂, C-4), 42.14 (CH, C-1), 42.51 (CH₂, C-5), 43.31 (C_q, C-6), 45.29 (CH, C-7), 54.97 (CH, C-2), 103.41 (CH₂, C-11), 157.58 (C_q, C-3).

GC/MS (EI, 70 eV): m/z (%) = 162 (17) [M⁺], 147 (53) [M⁺-CH₃], 134 (18), 133 (24), 119 (18), 106 (10), 105 (29), 94 (31), 93 (17), 92 (11), 91 (42), 80 (14), 79 (100), 78 (14), 77 (38), 67 (29), 65 (21), 55 (14), 53 (20), 51 (12), 41 (30), 39 (30), 27 (19).

HRMS: m/z calcd for C₁₂H₁₈ (M⁺), 162.1409; found, 162.1414.

cis,syn,trans-6-Methyl-3-methylen-tricyclo[5.4.0.0^{2,6}]undecane (1d)

1d was obtained from 3d according to procedure C.

Yield: 93 %, colorless oil.

IR (film): 3074, 2931, 2859, 1452, 887, 875, 835 cm⁻¹.

¹H-NMR (C₆D₆): δ = 1.136 (s, 3 H, 13-H), 1.147-1.590 (m, 9 H), 1.648-1.721 (m, 3 H), 2.482 (ddddd, 1 H, *J* = 17.3 Hz, 9.3 Hz, 1.8 Hz, 1.8 Hz), 2.606-2.694 (m, 2 H), 4.930-4.948 (m, 1 H, 12-H), 5.143 (dddd, 1 H, *J* = 2.2 Hz, 2.2 Hz, 2.1 Hz, 2.1 Hz, 12-H).

¹³C-NMR (C_6D_6): $\delta = 18.54$ (CH₃, C-13), 26.78 (CH₂), 26.87 (CH₂), 27.98 (CH₂), 28.32 (CH₂), 34.80 (CH₂), 37.50 (CH₂), 42.15 (CH), 46.40 (CH), 52.85 (C_q, C-6), 54.01 (CH), 108.53 (CH₂, C-12), 153.34 (C_q, C-3).

GC/MS (EI, 70 eV): m/z (%) = 176 (10) [M⁺], 161 (11) [M⁺-CH₃], 148 (22), 147 (19), 133 (16), 119 (20), 108 (19), 107 (66), 106 (18), 105 (38), 95 (15), 94 (86), 93 (44), 92 (14), 91 (55), 81 (14), 80 (16), 79 (100), 77 (29), 67 (21), 65 (12), 55 (23), 41 (36), 39 (24), 29 (13), 27 (20).

HRMS: *m/z* calcd for C₁₃H₂₀ (M⁺), 176.15650; found, 176.15618.

cis,anti,trans-6-Methyl-3-methylen-tricyclo[5.4.0.0^{2,6}]undecane (1e) and *cis,anti,cis*-6-Methyl-3-methylen-tricyclo-[5.4.0.0^{2,6}]undecane (1f)

A mixture of **1e-f** (30:70) was obtained from a mixture (30:70) of **3e-f** according to procedure C in 96 % yield. Analytical pure samples of **1e** and **1f** were obtained by preparative GC.

1e: colorless oil.

IR (film): 3075, 2931, 2746, 1651, 1451, 1372, 1309, 1247, 1191, 1091, 1014, 917, 907, 876, 834, 747, 686, 665 cm⁻¹.

¹H-NMR (C₆D₆): δ = 1.068 (s, 3 H, C-13), 1.106-1.305 (m, 6 H), 1.401 (dddd, 1 H, *J* = 11.3 Hz, 11.3 Hz, 8.2 Hz, 3.2 Hz), 1.517-1.551 (m, 1 H), 1.646-1.680 (m, 2 H), 1.762-1.796 (m, 1 H), 2.014 (ddd, 1 H, *J* = 13.2 Hz, 9.6 Hz, 9.6 Hz), 2.431 (d, 1 H, *J* = 8.2 Hz), 2.567 (dddd, 2 H, *J* = 9.7 Hz, 7.4 Hz, 2.3 Hz, 2.3 Hz), 4.869 (ddd, 2 H, *J* = 1.7 Hz, 1.7 Hz, 1.7 Hz, 12-H).

Supplementary Material (ESI) for Photochemical & Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2005

¹³C-NMR (C_6D_6):8 = 26.63 (CH₃, C-13), 26.68 (CH₂), 27.29 (CH₂), 27.76 (CH₂), 31.04 (CH₂), 31.41 (CH₂), 35.97 (CH₂), 46.58 (CH), 50.97 (CH), 51.46 (C_q , C-6), 60.00 (CH), 103.94 (CH₂, C-12), 155.57 (C_q , C-3).

GC/MS (EI, 70 eV): m/z (%) = 176 (7) [M⁺], 161 (10) [M⁺-CH₃], 148 (20), 147 (13), 133 (15), 119 (20), 108 (19), 107 (78), 106 (18), 105 (40), 95 (12), 94 (66), 93 (44), 92 (15), 91 (62), 81(15), 80 (18), 79 (100), 78 (10), 77 (34), 67 (23), 65 (14), 55 (24), 53 (24), 51 (11), 41 (43), 39 (31), 29 (17), 27 (25).

HRMS: m/z calcd for C₁₃H₂₀ (M⁺), 176.15650; found, 176.15601.

1f: colorless oil.

IR (film): 3074, 2933, 2866, 1656, 1449, 1375, 878, 665 cm⁻¹.

¹H-NMR (C_6D_6): $\delta = 1.077$ (s, 3 H, 13-H), 1.157-1.273 (m, 2 H), 1.351-1.518 (m, 6 H), 1.603-1.684 (m, 2 H), 1.921-2.001 (m, 2 H), 2.332 (d, 1 H, J = 3.9 Hz), 2.382 (dddd, 1 H, J = 15.7 Hz, 8.1 Hz, 4.6 Hz, 1.6 Hz, 1.6 Hz), 2.604-2.682 (m, 1 H), 4.851 (dddd, 1 H, J = 2.5 Hz, 1.4 Hz, 1.4 Hz, 1.2 H), 4.888 (dddd, 1 H, J = 1.7 Hz, 1.7 Hz, 1.7 Hz, 1.7 Hz, 1.7 Hz, 12-H).

¹³C-NMR (C_6D_6): $\delta = 22.00$ (CH₂), 22.10 (CH₃, C-13), 22.23 (CH₂), 22.38 (CH₂), 27.36 (CH₂), 34.34 (CH₂), 36.27 (CH), 37.88 (CH), 41.17 (CH₂), 47.33 (C_q , C-6), 55.57 (CH), 104.45 (CH₂, C-12), 157.42 (C_q , C-3).

GC/MS (EI, 70 eV): m/z (%) = 176 (9) [M⁺], 161 (10) [M⁺-CH₃], 148 (23), 147 (14), 133 (12), 119 (15), 108 (11), 107 (34), 106 (11), 105 (26), 95 (13), 94 (75), 93 (31), 92 (10), 91 (39), 81 (13), 80 (14), 79 (100), 77 (28), 67 (16), 65 (10), 55 (16), 53 (19), 41 (30), 39 (24), 29 (11), 27 (18).

HRMS: m/z calcd for C₁₃H₂₀ (M⁺), 176.15650; found, 176.15614.

(b) P. E. Eaton, On the Mechanism of the Photodimerization of Cyclopentenone. J. Am. Chem. Soc., 1962, 84, 2454-2455.

(c) G. L. Lange and C. Gottardo, ¹³C NMR and ¹H NMR Study of Substituted Tricyclic [2+2] Photoadducts, *Magn. Res. Chem*, 1996, **34**, 660-666.

(d) R. M. Bowman, C. Calvo, J. J. McCullough, P. W. Rasmussen, F. F. Snyder, Photoadditions of 2-Cyclohexenone Derivatives to Cyclopentene. An Investigation of Stereochemistry, *J. Org. Chem.*, 1972, **37**, 2084-2091.

(e) D. Valentine, N. J. Turro, Jr. and G. S. Hammond, Thermal and Photosensitized Dimerizations of Cyclohexadiene, J. Am. Chem. Soc., 1964, 86, 5202-5208.

2 J. Grota, I. Domke, I. Stoll, T. Schröder and J. Mattay, Synthesis, Fragmentation and Rearrangement Reactions of Annellated Cyclobutylcarbinols, *Synthesis*, 2005, in press.

3 R. Anderson, Synthetic Applications of Chloromethyltrimethylsilane, Synthesis, 1985, 717-734.

4 (a) P. F. Hurlik and D. Peterson, Stereospecific Olefin-Forming Elimination Reaction of B-Hydroxyalkylsilanes, J. Am. Chem. Soc., 1975, 97, 1464-1468.

(b) D. J. Ager, The Peterson Reaction, Synthesis, 1984, 384-398.

^{1 (}a) B. C. Ranu, D. C. Sarkar and M. K. Basu, A simple and efficient route towards usefully funcitonalised six and seven-membered ring systems via α -hydroxycyclobutane Rearrangement followed by retroaldol cleavage, *Tetrahedron*, 1989, **45**, 3107-3114.