Formal Intramolecular Photoredox Chemistry of Anthraquinones in Aqueous Solution: Photodeprotection for Alcohols, Aldehydes and Ketones.

Yunyan Hou and Peter Wan*

Department of Chemistry, Box 3065, University of Victoria, British Columbia, Canada, V8W 3V6, Fax:+1 (250) 721-7147; Tel: +1(250) 721-8976; E-mail: pwan@uvic.ca

Contents:

Experimental procedures for the preparation of 1-αD, 6-14
Photolysis procedures for 1, 1-αD, 6-14 and characterization of photolysis products

(quoted references are those that appear in the manuscript)

Experimental Procedures for the Preparation of 1-aD, 6-14

Preparation of α -D-2-(hydroxymethyl)-9,10-anthraquinone (1- α D)

NaBD₄ (0.023g, 2.4 mmol) in 20 mL of anhydrous methanol was added dropwise to 2-(formyl)anthraquinone (**3**, 0.14 g, 0.6 mmol) in 20 mL of anhydrous methanol under N₂. The mixture was stirred in an ice water bath for 2 h. After reaction, 20 ml of saturated NH₄Cl was added and the resulting solution extracted by 2×25 mL of CH₂Cl₂. The collected extractions were dried over anhydrous MgSO₄ and the solvent removed. The residue was purified by column chromatography with silica gel using 5% EtOAc in CH₂Cl₂ as a eluent, to give **1-** α D (white powder, 0.13 g, m.p 183-185°C) in 90% yield. ¹H NMR (CDCl₃, 300 MHz) δ 8.31-8.20 (m, 4H), 7.82-7.20 (m, 3H), 4.86 (s, 1H), 2.0 (s, broad OH peak); MS (EI), m/z 239 (M⁺, 100), 238 (20), 237 (32), 235 (42).

The 2-(formyl)anthraquinone (3) was prepared by photolysis of 2-

(hydroxymethyl)anthraquinone (**1**) which was purchased from Aldrich. A solution (100 mg of **3** in 1:1 H₂O-MeCN, argon purged, in 300 mL of photolysis quartz tube) was irradiated for 10 min and extracted with 3×50 mL CH₂Cl₂. The combined extractions were dried over anhydrous MgSO₄ and solvent was removed. The same procedure was repeated twice. The combined material was purified by column chromotography with silica gel using CH₂Cl₂ as an eluent, to give **3** (pale yellow powder, 0.24 g) in 80% yield. ¹H NMR (CDCl₃, 300 MHz) δ 10.20 (s, 1H), 8.74 (s, 1H), 8.41 (d, 1H, *J* = 8.1 Hz), 8.37-8.25 (m, 2H), 8.26 (d, 1H, *J* = 8.1 Hz), 7.90-7.77 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) 191.0, 182.6, 182.3, 140.1, 137.1, 134.9, 134.8, 134.3, 133.5 (2C), 133.3, 129.7, 128.4, 127.7 (2C); MS (EI), m/z 236 (M⁺, 100), 237 (75), 235 (90), 207 (38).

Preparation of benzylic bromides 1b and 6b

A mixture of **1a** (2 g, 8 mmol), NBS (1.8 g, 10 mmol) and benzoyl peroxide (0.2 g, 0.8 mmol) in 100 mL of benzene was refluxed overnight. After reaction, the mixture was washed with distilled water (2×50 mL) and the collected organic solution was dried over anhydrous MgSO₄. After solvent was removed, the brown crude product was purified by column chromatography with silica gel using CH₂Cl₂ as an eluent, to give **1b** (yellow powder, 2.3 g) in 92% yield. ¹H NMR (CDCl₃, 300 MHz) δ 8.33-8.22 (m, 4H), 7.84-7.71 (m, 3H), 4.57 (s, 1H).

Compound **6b** (yellow powder, 2.1 g, 90% yield) was prepared following the same procedure as that described for **1b**. ¹H NMR (CDCl₃, 300 MHz) δ 8.32-8.13 (m, 3H), 8.03 (d, 1H, *J* = 8.1 Hz), 7.78 (d, 1H, *J* = 8.1 Hz), 7.75-7.67 (m, 2H), 5.20 (q, 1H, *J* = 6.6 Hz).

Preparation of 2-(1-hydroxyethyl)-9,10-anthraquinone (6)

A mixture of **6b** (2.0 g, 6.3 mmol) and CaCO₃ (4.5 g, 4.5 mmol) in 50 mL of 1:1 water and dioxane was refluxed for 2 days. After the reaction, 5 mL of H₂SO₄ (0.5 M) was added to the mixture to neutralize the excess CaCO₃ and extracted with 2×50 mL CH₂Cl₂. The collected extractions were dried over anhydrous MgSO₄ and solvent was removed. The crude material was purified by column chromatography with silica gel using a mixture of hexane and EtOAc as eluent, to give **6** (yellow powder, 1.2 g, m.p 101-103°C) in 75% yield, ¹H NMR (300MHz, CDCl₃) δ 8.35-8.24 (m, 4H), 7.87-7.74 (m, Supplementary Material (ESI) for Photochemical & Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2008 3H), 5.08 (q, 1H, J = 6.6 Hz), 2.0 (s, broad OH peak), 1.56 (d, 3H, J = 6.6 Hz); ¹³C NMR (CDCl₃, 75 MHz) 183.3, 183.1, 152.9 (2C), 134.4, 134.3, 133.7, 133.6, 132.7, 131.3, 127.9, 127.4, 127.3, 124.2; MS (EI), m/z 252 (M⁺, 3), 237 (75), 210 (100); HRMS calculated for C₁₆H₁₂O₃ 252.0786; observed 252.0776; IR (KBr, cm⁻¹) 3418, 2973, 1675, 1591.

Preparation of 2-(ethoxymethyl)-9,10-anthraquinone (7)

A mixture of **1b** (0.37 g, 1.2 mmol) and CaCO₃ (0.31 g, 6 mmol) in 20 mL of ethanol was refluxed overnight. After the reaction, 6 mL of H₂SO₄ (0.5 M) was added to neutralize the excess CaCO₃ and extracted by 2 × 50 mL CH₂Cl₂. The collected extracts were dried over anhydrous MgSO₄ and solvent was removed to give a brown crude material which was purified by column chromatography with silica gel using CH₂Cl₂ as an eluent, to give 7 (pale yellow powder, 0.18g, 115-117°C) in 56% yield. ¹H-NMR (300MHz, CDCl₃) δ 8.33-8.25 (m, 3H), 8.23 (s, 1H), 7.82-7.74 (m, 2H), 4.65 (s, 2H), 3.61 (q, 2H, *J* = 7.4 Hz), 1.28 (t, 3H, *J* = 7.4 Hz); ¹³C-NMR (CDCl₃, 75 MHz) 183.3, 183.1, 152.9 (2C), 134.4, 134.3, 133.7, 133.6, 132.7, 131.3, 127.9, 127.4, 127.3, 124.2; MS (EI), m/z 266 (M⁺, 10), 237 (75), 210 (100); HRMS calculated for C₁₇H₁₄O₃ 266.0943; observed 266.0945; IR (KBr, cm⁻¹) 2974, 2867, 1677, 1590.

Preparation of 2-(1-methoxyethyl)-9,10-anthraquinone (8)

A mixture of **6b** (0.27 g, 0.86 mmol) and CaCO₃ (0.43g, 4.3 mmol) in 30 mL of methanol was refluxed for 3 days. After the reaction, 9 mL of H_2SO_4 (0.5 M) was added to neutralize excess CaCO₃. This was followed by the addition of 200 mL of water to the mixture to give a yellow precipitate. After suction filtration, the yellow precipitate (powder) was recrystallized from ethanol to give **8** (yellow crystalline plates, 0.17g, m.p.

Supplementary Material (ESI) for Photochemical & Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2008 95-96°C) in 74% yield. ¹H NMR (CDCl₃, 300 MHz) δ 8.34-8.26 (m, 3H), 8.22 (s, 1H), 7.82-7.73 (m, 3H), 4.47(q, 1H, *J* = 6.6 Hz), 3.28 (s, 3H), 1.47 (d, 3H, *J* = 6.6 Hz); ¹³C NMR (CDCl₃, 75 MHz) 183.4, 183.1, 150.9 (2C), 134.4, 134.3, 133.9, 133.7, 133.0, 131.8, 128.0, 127.4 (2C), 125.1, 79.3, 57.1, 23.8; MS (EI), m/z 266 (M⁺, 10), 251 (100), 235 (20); HRMS calculated for C₁₇H₁₄O₃ 266.0943; observed 266.0941; IR (KBr, cm⁻¹) 2974, 2823, 1677, 1590.

Preparation of 2-(acetoxymethyl)-9,10-anthraquinone (9)

A mixture of **1** (0.20 g, 0.8 mmol) and NaOAc (0.13 g, 1.6 mmol) was refluxed in 10 mL of anhydrous EtOAc for 1 h. After the reaction, the solution was poured into 50 mL of ice-cold water and stirred to give a yellow precipitate. The precipitate was isolated by suction filtration and purified by column chromatography with silica gel using 20% EtOAc-CH₂Cl₂ as an eluent, to give **9** in 70% yield (pale yellow powder, 0.14 g, m.p. 149-150°C); ¹H NMR (CDCl₃, 300 MHz) δ 8.35-8.25 (m, 4H), 7.85-7.72 (m, 3H), 5.25 (s, 2H), 2.16 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) 183.1, 182.9, 170.8, 142.9 (2C), 134.5, 134.4, 133.9, 133.7, 133.3, 133.1, 127.9, 127.5 (2C), 126.3, 65.3, 21.1; MS (EI), m/z 280 (M⁺, 3), 238 (100), 221 (10), 209 (25); HRMS calculated for C₁₇H₁₂O₄ 280.0736; observed 280.0740; IR (KBr, cm⁻¹) 1741, 1677, 1590.

Preparation of 9-phenyl-7,11-dihydro-8,10-dioxa-cyclohepta [b]anthracene-5,13-dione (10)

A solution of **12** (0.2 g, 0.74 mmol) and benzaldehye (0.4 mL, 3.0 mmol) in 10 mL of toluene along with one drop of conc. H_2SO_4 was refluxed for 0.5 h in a Dean-Stark apparatus, to give a brown solution. After the reaction, the solution was neutralized with 5% NaHSO₃ to give a brown precipitate. The brown precipitate was isolated by suction

Supplementary Material (ESI) for Photochemical & Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2008 filtration and purified by column chromatography with silica gel using CH₂Cl₂ as eluent, to give **10** (pale yellow powder, 0.13 g, m.p. 223-225°C) in 49% yield. ¹H NMR (CDCl₃, 300 MHz) δ 8.35-8.24 (m, 2H), 8.06 (s, 2H), 7.84-7.75 (m, 2H), 7.60-7.52 (m, 2H), 7.44-7.33 (m, 3H), 6.00 (s, 1H), 5.12 (d, 2H, *J* = 14.7 Hz), 5.02 (d, 2H, *J* = 14.7 Hz); ¹³C NMR (CDCl₃, 75 MHz) 183.0 (2C), 145.6 (2C), 138.0, 134.4 (2C), 133.7 (2C), 132.5 (2C), 129.1, 128.6 (2C), 127.5 (2C), 126.7 (2C), 125.8 (2C), 103.6, 68.4 (2C); MS (EI)), m/z 356 (M⁺, 2), 250 (80), 234 (100); IR (KBr, cm⁻¹) 1671, 1590.

Preparation of 9-methyl-9-phenyl-7,11-dihydro-8,10-dioxa-cyclohepta [b]anthracene-

5,13-dione (11)

Compound **11** was prepared from **12** (0.1g, 0.37 mmol) and acetophenone (0.18 mL, 1.5 mmol) following the synthetic procedure described for **10** in 30% overall yield (**11**, white powder, 0.041 g, m.p. 209-210°C). ¹H NMR (CDCl₃, 300 MHz) δ 8.26-8.18 (m, 2H), 7.92 (s, 2H), 7.76-7.68 (m, 2H), 7.58-7.51 (m, 2H), 7.38-7.24 (m, 3H), 5.02 (d, 2H, *J* = 15.5 Hz), 4.82 (d, 2H, *J* = 15.5 Hz), 1.64 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) 183.0 (2C), 145.4 (2C), 142.4, 134.3 (2C), 133.8 (2C), 132.3 (2C), 128.6, 128.4 (2C), 127.4 (2C), 126.2 (2C), 125.3 (2C), 104.7, 65.7 (2C), 26.1; MS (EI), m/z 370 (M⁺, 2), 355 (20), 250 (40), 105 (100); HRMS calculated for C₂₄H₁₈O₄ 370.1205; observed 370.1209; IR (KBr, cm⁻¹) 2934, 1675, 1591.

Preparation of 2,3-di(hydroxymethyl)-9,10-anthraquinone (12)

6

A mixture of **12a** (Aldrich, 1.0 g, 4.5 mmol), NBS (1.8 g, 10.4 mmol) and benzoyl peroxide (0.10 g, 0.04 mmol) in 50 mL of benzene was refluxed for overnight. After the reaction, the mixture was washed with distilled water (2 × 50 mL) and the collected organic solution was dried over anhydrous MgSO₄. After solvent was removed, a brown residue (**12b**, 1.8g, 90% yield) was obtained. A mixture of **12b** (1.8 g, 4.6 mmol) and CaCO₃ (4.6g, 46 mmol) was refluxed in 1:1 water and dioxane for 2 days to give a brown solution. After the reaction, 50 mL of H₂SO₄ (0.5 M) was added to neutralized excess CaCO₃. Upon addition of 200 mL water, a brown precipitate was formed which was collected by suction filtration. This crude material was recrystallized from toluene to give **12** (yellow brown needles, 0.34 g, m.p. 214-216°C) in 30% yield. ¹H NMR (acetone-*d*₆, 500 MHz) δ 8.42 (s, 1H), 8.30-8.26 (m, 2H), 7.94-7.90 (m, 2H), 4.88 (d, 2H, *J* = 5.5 Hz), 4.65 (t, OH, *J* = 5.5 Hz); ¹³C NMR (acetone-*d*₆, 125 MHz) 183.6 (2C), 147.3 (2C), 135.1 (2C), 134.7 (2C), 133.2 (2C), 127.7 (2C), 125.8 (2C), 61.7 (2C); MS (EI), m/z 267 (M⁺-1, 3), 264 (70), 248 (65), 235 (100); IR (KBr, cm⁻¹) 3205, 1672, 1587.

Preparation of 2-[1,3]dioxolan-2-yl-9,10-anthraquinone (13)

Compound **13** was prepared from **3** (0.3 g, 1.3 mmol) and ethylene glycol (0.08 g, 1.3 mmol) followed the procedure described for **10** with 74% overall yield (**13**, pale yellow powder, 0.27 g, m.p. 129-131°C). ¹H NMR (CDCl₃, 300 MHz) δ 8.34 (s, 1H), 8.28-8.19 (m, 3H), 7.84 (d, 1H, *J* = 8.1 Hz), 7.78-7.70 (m, 2H), 5.89 (s, 1H), 4.16-4.00 (m, 4H); ¹³C NMR (CDCl₃, 75 MHz) 183.1 (2C), 144.7 (2C), 134.4, 134.1, 133.8, 133.7, 133.6, 132.2, 127.8, 127.5, 127.4, 125.7, 102.8, 65.8 (2C); MS (EI), m/z 280 (M⁺, 75), 279 (100); HRMS calculated for C₁₇H₁₂O₄ 280.0736; observed 280.0728; IR (KBr, cm⁻¹) 3069, 1724, 1676, 1592.

Preparation of 1,2-dibenzoyl-4-methylbenzene (14)

Compound **14** was prepared from **14a** (0.8 g, 2.7 mmol) following the synthetic procedure described for **12** with 65% overall yield (**14**, pale yellow oil, 0.55 g). ¹H NMR (CDCl₃, 300 MHz) δ 7.70-7.61 (m, 4H), 7.57 (s, 1H), 7.56 (d, 2H, *J* = 5.9 Hz), 7.53-7.44 (tt, 2H, *J* = 8.1 Hz), 7.53-7.43 (tt, 4H, *J* = 8.1 Hz), 4.79 (s, 2H), 2.0 (s, broad OH peak); ¹³C NMR (CDCl₃, 75 MHz) 197.1, 196.6, 144.3, 140.7, 138.9, 137.4, 137.3, 133.3, 133.2, 130.4, 130.0 (2C), 129.9 (2C), 128.6 (2C), 128.5 (2C), 128.4, 127.7, 64.4; IR (KBr, cm⁻¹) 3448, 3059, 2870, 1655, 1596; MS (EI), m/z 316 (M⁺, 10), 314 (M⁺-2, 60), 237 (55), 105 (100).

Compound **14a** was in turn prepared following a literature procedure⁹ with 30% overall yield (**14a**, pale yellow oil, 1.2 g). ¹H NMR (CDCl₃, 300 MHz) δ 7.65-7.54 (m, 4H), 7.49-7.35 (m, 3H), 7.35-7.22 (m, 6H), 2.38 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) 197.2, 196.5, 141.7, 140.8, 137.7, 137.6, 137.0, 133.2, 133.0, 131.0, 130.4, 130.3, 130.0 (2C), 129.9 (2C), 128.6 (2C), 128.5 (2C), 21.7; MS (EI), m/z 300 (M⁺, 60), 223 (100).

<u>Photolysis procedures for 1-αD, 6-14 and characterization of photolysis products</u> <u>Photolysis of 1-αD</u>

Supplementary Material (ESI) for Photochemical & Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2008 Compound **1-\alphaD** (6 mg in 50 mL MeCN and 50 mL H₂O, pH 7) was irradiated for 1 min, 2 min and 4 min at 300 nm (2 lamps) under argon, to give a yellow brown solution. After work-up in air, the brown residue was characterized by ¹H NMR to give a mixture of **3** (8-28%) and **16** (17-57%). Further purification was obtained by prep. TLC (silica gel, CH₂Cl₂) to give a mixture of **3** and **16** (yellow powder, 5 mg), ¹H NMR (CDCl₃, 300 MHz) δ 10.2 (s, 1H), 8.77 (s, 3.1 H), 8.45 (d, 3.1 H, *J* = 8.1 Hz), 8.40-8.23 (m, 8.8 H), 7.91-7.76 (m, 6.2 H); MS (EI), m/z 237 (M⁺, 80), 236 (60), 235 (100).

Photolysis of 1 to give 17 and 19

Compound **1** (20 mg in 50mL of MeCN and 50 mL of H₂O, pH 7) was irradiated for 1 min at 300 nm (16 lamps) under argon to give a yellow brown solution. Sufficient solid NaOH was added to change the solution colour to blue. This was followed by the addition of 1 mL of Ac₂O, which turned the solution to a bright yellow. After work-up in air, the material was characterized by ¹H NMR showing formation of **17** (50 % conversion). Separation and purification was achieved by prep. TLC (silica gel, CH₂Cl₂) to give **17** in 40% yield (yellow powder, 11 mg, m.p. 175-177°C). ¹H NMR (CDCl₃, 300 MHz) δ 10.16 (s, 1H), 8.43 (s, 1H), 8.05-7.91 (m, 4H), 7.66-7.05 (m, 2H), 2.69 (s, 3H), 2.65 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) 191.8, 169.5 (2C), 142.6, 140.8, 134.5 (2C), 130.4, 128.2, 127.5, 126.7, 125.7, 125.1, 123.5, 122.4 (2C), 122.2, 21.0, 20.9; MS (EI), m/z 322 (M⁺, 3), 280 (10), 238 (100); HRMS calculated for C₁₉H₁₄O₅ 322.0841; observed 322.0845; IR (KBr, cm⁻¹) 3067, 2918, 2849, 1757, 1689, 1626. Followed with the above procedure, photolysis of compound **1** (20 mg, 350 nm, 16 lamps, 20 min) in neat ethanol gave **19** (75% conversion). Further purification was

obtained by prep. TLC (silica gel, CH₂Cl₂) to give 19 in 60% yield (pale yellow powder,

9

Supplementary Material (ESI) for Photochemical & Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2008 16 mg, m.p. 194-196°C). ¹H NMR (CDCl₃, 300 MHz) δ 7.97-7.89 (m, 3H), 7.87 (s, 1H), 7.56-7.45 (m, 3H), 4.87 (s, 2H), 2.63 (s, 3H), 2.62 (s, 3H); ¹³C NMR (acetone-*d*₆, 125 MHz) 170.2 (2C), 142.0, 141.4, 141.3, 127.4, 127.19, 127.17, 125.4, 125.2, 124.9, 124.7, 122.94, 122.87, 122.79, 118.7, 64.4, 20.79, 20.78; MS (EI), m/z 324 (M⁺, 10), 282 (15), 240 (100); HRMS calculated for C₁₉H₁₆O₅ 324.0998; observed 324.1000; IR (KBr, cm⁻¹) 3449, 1751.

Photolysis of 6 and 8

Photolysis of compound **6** (10 mg, 1:1 H₂O-MeCN, 350 nm, 16 lamps, 1 min, argon purged) gave a yellow brown solution. After work-up in air, the brown residue was characterized by ¹H NMR to give **8b** (70% conversion). Further purification was obtained by prep. TLC (silica gel, CH₂Cl₂) to give **8b** (yellowish powder, 6 mg, 60% yield). Following the same photolysis procedure of **6**, photolysis of **8** also gave product **8b** (60% yield). ¹H NMR (CDCl₃, 300 MHz) δ 8.79 (s, 1H), 8.41-8.23 (m, 4H), 7.86-7.75 (m, 2H), 2.73 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) 196.97, 182.7, 182.6, 141.3, 136.3, 134.7 (2C), 134.0, 133.7, 133.6, 133.1, 128.1, 127.69, 127.67, 127.6, 22.3; MS (EI), m/z 322 (M⁺, 3), 280 (10), 238 (100); HRMS calculated for C₁₉H₁₄O₅ 250.0630; observed 250.0630; IR (KBr, cm⁻¹) 1693, 1673, 1589.

Photolysis of 7

Following the same photolysis procedure as for **6**, photolysis of **7** gave product **3** (yellow powder, 60% yield).

Photolysis of 10 and 11

Photolysis of **10** (5 mg, 1:3 H₂O-MeCN, pH 7, 300 nm, 16 lamps, 5 min, argon purged) gave a yellow brown solution. After work-up in air, the brown residue was characterized

Supplementary Material (ESI) for Photochemical & Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2008 by ¹H NMR to give **27** (30% conversion). Further purification was obtained by TLC (silica gel, CH₂Cl₂) to give **27** (white powder, 1 mg, 25% yield). Photolysis of **11** also gave **27** by following the same photolysis procedure of **10**. ¹H NMR (Acetone- d_6 , 500 MHz) δ 8.66 (s, 1H), 8.59 (s, 1H), 8.37-8.33 (m, 2H), 8.03-7.98 (m, 2H), 5.67 (s, 2H); MS (EI), m/z 264 (M⁺, 60), 248(5), 235 (100); HRMS calculated for C₁₆H₈O₄ 264.0432; observed 2264.0420; IR (KBr, cm⁻¹) 1764, 1673, 1586, 1332, 1303.

Photolysis of 12

Photolysis of **12** (5 mg, 1:3 H₂O-MeCN, pH 7, 300 nm, 16 lamps, 1 min) gave a brown solution. After work-up in air, the brown residue was characterized by ¹H NMR to give **25** (50% conversion). Further purification was obtained by prep. TLC (silica gel, 20% EtOAc-CH₂Cl₂) to give **25** (brown yellow powder, 2 mg, 40%). ¹H NMR (Acetone- d_6 , 300 MHz) δ 8.40 (s, 1H), 8.36-8.28 (m, 2H), 8.23 (s, 1H), 7.85-7.77 (m, 2H), 6.63 (d, 1H, J = 7.3 Hz), 5.38 (d, 1H, J = 14.0 Hz), 5.17 (d, 1H, J = 14.0 Hz), 3.08 (d, OH, J = 7.3 Hz); MS (EI), m/z 266 (M⁺, 60), 248(100), 235 (45); HRMS calculated for C₁₆H₁₀O₄ 266.0579; observed 266.0572; IR (KBr, cm⁻¹) 3368, 1675 1590, 1327, 1300.

Photolysis of 13

Photolysis of **13** (10 mg, 1:1 H₂O-MeCN, pH 7, 300 nm, 16 lamps, 1 min) gave a yellow solution. After work-up in air, the yellow residue was characterized by ¹H NMR to give **30** in 40% yield. Separation and purification was achieved by prep. TLC (silica gel, CH₂Cl₂) to give **30** (yellow powder, 3.5 mg, 30%). ¹H NMR (CD₃Cl, 500 MHz) δ 8.94 (d, 1H, *J* = 1.8), 8.44 (dd, 1H, *J* = 1.8, *J* = 8.1,), 8.38 (d, 1H, *J* = 8.1), 8.35-8.30 (m, 2H), 7.85-7.80 (m, 2H), 4.54 (t, 2H, *J* = 4.6 Hz), 4.02 (t, 2H, *J* = 4.6 Hz); ¹³C NMR (CD₃Cl, 500 MHz) 182.4, 182.2, 165.2, 136.1, 134.8, 134.6, 134.44, 134.38, 133.5, 133.33, 133.3,

Supplementary Material (ESI) for Photochemical & Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2008 128.6, 127.5 127.4, 127.3, 67.3, 61.1; MS (EI), m/z 295 (M⁺-1, 1), 253 (M⁺-C₂H₃O, 70), 235(100), 207 (25); IR (KBr, cm⁻¹) 3358, 2956, 2884, 1726, 1680, 1591, 1273, 1247. Photolysis of **14**

Photolysis of 14 (20 mg, 1:1 H₂O-MeCN, pH ~ 0 (5% H₂SO₄), 300 nm, 16 lamps, 1.5 h, argon purged) gave a yellow solution. After work-up in air, the yellow powder was characterized by ¹H NMR and assigned to be a mixture of product **32** (30% conversion) and **33** (14% conversion). The mixture was separated by prep. TLC (silica gel, 20%) EtOAc-CH₂Cl₂) to give pure **33** (colourless oil, 2 mg, 10% yield) and **32** (yellow-orange powder, 5 mg) contaminated with 10% of 33 since 32 was found to be sensitive to oxygen and light, being readily converted to 33 under such conditions. Characterization of **32**: ¹H NMR (CD₃Cl, 300 MHz) & 9.95 (s, 1H), 8.35 (s, 1H), 8.03-7.83 (m, 5H), 7.59-7.44 (m, 5H), 7.44-7.29 (m, 2H); MS (EI), m/z 298 (M⁺, 100), 269(15); HRMS calculated for C₂₁H₁₄O₂ 298.0994; observed 298.0995. Characterization of **33**: ¹H NMR $(CD_3Cl, 300 \text{ MHz}) \delta 10.12 \text{ (s, 1H)}, 8.12 \text{ (d, 1H, } J = 8.8 \text{ Hz}), 8.10 \text{ (s, 1H)}, 7.75 \text{ (d, 1H, } J$ = 8.8 Hz, 7.70 (d, 4H, J = 7.3 Hz), 7.59-7.50 (m, 2H), 7.45-7.35 (tt, 4H, 1H, J = 7.3 Hz); ¹³C NMR (CDCl₃, 75 MHz) 196.0, 195.5, 190.9, 145.7, 140.8, 137.1, 136.7 (2C), 133.8, 133.7, 131.5, 130.7, 130.2 (2C), 130.0 (2C), 128.8 (4C); MS (EI), m/z 314 (M⁺, 80), 237 (70), 105 (100); HRMS calculated for $C_{21}H_{14}O_3$ 314.0943; observed 314.0937; IR (neat film, cm⁻¹) 3061, 1703, 1664, 1597.