Supplementary Information

Vibrational Deactivation Of Singlet Oxygen : Does It Play A Role In Stereoselectivity During Photooxygenation?

Marissa Solomon^a, J. Sivaguru^b, Steffen Jockusch^a, Waldemar Adam^c, Nicholas J. Turro^a

 [a]Department of Chemistry, Columbia University, 3000 Broadway New York, NY 10027, USA
 [b]Department of Chemistry and Molecular Biology, North Dakota State University, Fargo, ND 58105, USA
 [c]Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, GERMANY
 E-mail: adam@chemie.uni-wuerzburg.de

<u>i) General</u>

Spectrophotometric grade solvents were used as received from Aldrich. Methylene blue was used as received from Aldrich. Deuterated solvents and L-(d_8)-Valine were obtained from Cambridge Isotope Labs. Chloroform-d, methylene chloride- d_2 and methanol- d_4 were used as received.^{Si,Sii} Dioxetanes were analyzed using ¹H NMR (500Mhz, Bruker). Diols 4 were analyzed using a Hewlett-Packard 1100 HPLC, equipped with a Chiralcel OD normal phase chiral column. The Z and E enecarbamates Z-1-h₈ and E-1-h₈ and Diols 4 were synthesized as previously described.^{Sii} Synthesis of L-(d_8)-Valinol precursor to the Z-1-d₈ enecarbamate followed published procedures.^{Siii}

ii) Reaction Procedures

a) General procedure for photooxidation of the Z-1- h_8 , Z-1- d_8 and E-1- h_8 enecarbamates by singlet oxygen:

The enecarbamate was dissolved in CD_2Cl_2 (kept over NaHCO₃) and 2 mg 5,10,15,20-Tetrakis-(Pentafluorophenyl)-Porphine (TFPP) added. The solution was irradiated at –23°C (Ccl4/Dry Ice) and irradiated with a 300W lamp using <400 nm cutoff filter. The appearance of the C_1 -*H* peak in the dioxetane and the disappearance of the C_1 -*H* peak of the starting enecarbamate was monitored by low temperature ¹H-NMR until >90% conversion. The resulting dioxetane was maintained at –23°C and characterized by ¹H-NMR.

Compound	¹ H-NMR shift of Dioxetane C _{1'} - <i>H</i> (δ, ppm)
Z(S,S)-1-h ₈	6.63
$Z(S,S)-1-\mathbf{d}_8$	6.20, 6.12
E(R,S)-1-h ₈	6.28

iii) HPLC (Chiral Stationary Phase) analysis condition Diol 4:

HPLC	: Hewlett-Packard Series 1100
Column	: Chiralcel OD, Normal Phase
Program	: 90:10 Hexanes:2-Propanol, Flow 0.5ml/min

iv) Structure Matrix:

E-1-h₈

Figure 1: ¹H-NMR resulting from photooxygenation of enecarbamate Z(4S,3'S)-1-d₈ to dioxetane Z-2-d₈. The reaction was carried out in CD₂Cl₂ at -23°C using a 300W lamp and <400 nm cutoff filter. Two dioxetanes result from the reaction of the enecarbamate with ¹O₂ with an 80% *de* favoring the (1'*R*,2'*R*) diastereomer over the (1'*S*,2'*S*) diastereomer.

NaBH₄/DBU. *Bottom:* HPLC trace of the four isomers of Diol 4.

Figure 3: ¹H-NMR spectra monitoring the photooxygenation of enecarbamate E(4R,3'S)-1-h₈ to dioxetane *E*-2-h₈ by the disappearance of the enecarbamate peak and the appearance of the dioxetane peak. The reaction was carried out in CD₂Cl₂ at -23°C using a 300W lamp and <400 nm cutoff filter.

Figure 4: *Brown:* HPLC trace of the four isomers of Diol 4. *Green:* HPLC trace of E(R,S)-1-h₈. *Blue:* HPLC trace for coinjection of E(R,S)-1-h₈ and the four isomers of Diol 4. *Red:* HPLC trace of diols (4) resulting from the reduction of dioxetane E-2-h₈ (obtained from photooxyenation of enecarbamate E(R,S)-1-h₈) to diol E-3-h₈ and the subsequent reaction with NaBH₄/DBU.

vi) Additional References:

- Si Poon, T.; Turro, N. J.; Chapman, J.; Lakshminarasimhan, P.; Lei, X.; Adam, W.;
 Bosio, S. G. Org. Lett. 2003, 5, 2025-28.
- Sii For the synthesis procedure and the product characterizations of Z and E enecarbamates (1), Dioxetanes (2) and Diols 4: a) Adam, W.; Bosio, S. G.; Turro, N. J.; J. Am. Chem. Soc. 2002, 124, 8814-5. b) Poon, T.; Sivaguru, J.; Franz, R.; Jockusch, S.; Martinez, C.; Washington, I.; Adam, W.; Inoue, Y.; Turro, N. J.; J. Am. Chem. Soc.; 2004; 126; 10498-10499. c) Sivaguru, J.; Poon, T.; Franz, R.; Jockusch, S.; Adam, W.; Turro, N. J.; J. Am. Chem. Soc.; 2004; 126; 10818-10817. d) Adam, W.; Bosio, S. G.; Turro, N. J., Wolff, B. T.; J. Org. Chem. 2004, 69, 1704-5.
- Siii Hsiao, Y., Hegedus, L. S.; J. Org. Chem. 1997, 62, 3586-91.