Ultrafast Studies of Some Diaryl Carbenes

Jin Wang,[†] Yunlong Zhang,[†] Jacek Kubicki,^{†,‡} and Matthew S. Platz^{†,*}

[†]Department of Chemistry, The Ohio State University, 100 West 18"th Avenue,

Columbus, Ohio, 43210, [‡]the Quantum Electronics Laboratory, Faculty of Physics, Adam

Mickiewicz University, 85 Umultowska, Poznan 61-614, Poland

platz.1@osu.edu

List of Tables

Table S1. TD-B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) calculations of singlet DBC and its Cartesian coordinates	.4
Table S2. TD-B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) calculations of triplet DBC and its Cartesian coordinates	. 5
Table S3. TD-B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) calculations of singlet AN and its Cartesian coordinates	. 6
Table S4. TD-B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) calculations of triplet AN and its Cartesian coordinates	.7
Table S5. TD-B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) calculations of ANH ⁺ and its Cartesian coordinates	.9

List of Figures

Figure S1. Kinetic traces were produced by ultrafast LFP ($\lambda_{ex} = 308 \text{ nm}$) of DDBC in acetonitrile. The kinetic traces were probed at 350, 360, 370, 380 and 400 nm, respectively and globally fitted in equation $\Delta OD = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2) + A_3$, where τ_1 is unlinked and τ_2 is linked. The value $83 \pm 3 \text{ ps}$ shown above is the common time constant τ_2 , which is assigned to the lifetime of ¹DBC in acetonitrile. 10

Figure S8. Transient spectra were generated by ultrafast LFP ($\lambda_{ex} = 308$ nm) of DAN in 2,2,2-	
trifluoroethanol with a time window of 1–20 ps	15

E = -578.860935925 Hartree

λ_{max}	f	λ_{max}	f		Cartesian Coordinates					
				С	-0.546437	1.720482	0.541907			
1679.89	0.0047	259.88	0.0084	С	0.546413	1.720584	-0.541637			
				С	1.614793	0.683587	-0.292085			
27/ 72	0 0005	250 52	0 0215	С	1.285852	-0.676437	0.015988			
5/4./5	0.0025	259.52	0.0315	С	-0.000018	-1.342430	0.000205			
				С	-1.285832	-0.676465	-0.015842			
371.40	0.0021	253.39	0.0117	С	-1.614828	0.683575	0.292090			
0/2010	0.0011	200107		С	-2.364194	-1.559544	-0.298511			
				С	-3.690481	-1.147173	-0.304210			
360.34	0.0018	250.60	0.0255	С	-3.985669	0.173564	0.039055			
				С	-2.955365	1.068897	0.341482			
200 11	0 0 0 0 0	240 70	0 0000	С	2.955332	1.068899	-0.341664			
359.11	0.0380	240.78	0.0066	С	3.985667	0.173564	-0.039357			
				С	3.690530	-1.147157	0.304024			
341 94	0 0335	238 08	0 0039	С	2.364234	-1.559513	0.298564			
511.51	0.0555	200.00	0.0055	Н	-0.076688	1.562985	1.523898			
				Н	-1.018380	2.708908	0.581579			
324.48	0.4712	234.94	0.0029	Н	1.018370	2.709008	-0.581101			
				Н	0.076627	1.563287	-1.523644			
	0 0 0 1 1	006 00	0 0010	Н	-2.092786	-2.590241	-0.503309			
295.14	0.0011	226.23	0.0019	Н	-4.487467	-1.846861	-0.540024			
				Н	-5.018017	0.513581	0.071226			
278 23	0 0185	225 06	0 0030	Н	-3.203034	2.098096	0.593071			
270.25	0.0105	225.00	0.0050	Н	3.202983	2.098086	-0.593321			
				Н	5.018015	0.513568	-0.071699			
270.81	0.0334	223.20	0.0256	Н	4.487552	-1.846828	0.539766			
`				н	2.092851	-2.590189	0.503514			

Table S1. TD-B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) calculations of singlet DBC and its Cartesian coordinates

E = -578.875296183 Hartree

λ_{max}	f	λ_{max}	f		Cartesian Coordinates					
				С	0.582219	1.721959	-0.512910			
438.01	0.0077	297.53	0.0139	С	-0.582190	1.721858	0.513156			
				С	-1.663063	0.699586	0.246312			
200 11	0 0001	200 17	0 0000	С	-1.329388	-0.673673	-0.000279			
399.11	0.0001	209.17	0.0000	С	-0.000027	-1.126683	-0.000129			
				С	1.329387	-0.673638	0.000255			
395.56	0.0042	288.8	0.0021	С	1.663079	0.699585	-0.246392			
0,0,00	010012	20010	0.0011	С	2.385523	-1.599443	0.229227			
				С	3.711272	-1.194288	0.222543			
352.63	0.0069	279.72	0.0001	С	4.029537	0.148703	-0.009029			
				С	3.004818	1.073851	-0.236149			
252.20	0 0500	077 40	0 001	С	-3.004786	1.073896	0.235984			
352.30	0.0525	277.49	0.001	С	-4.029525	0.148758	0.008896			
				С	-3.711299	-1.194272	-0.222485			
345 17	0 0224	273 95	0 0288	С	-2.385563	-1.599469	-0.229112			
515.17	0.0221	275.55	0.0200	Н	0.161229	1.570067	-1.517423			
				Н	1.042963	2.716372	-0.521274			
323.53	0.0021	272.76	0.0009	Н	-1.042866	2.716300	0.521805			
				Н	-0.161253	1.569643	1.517644			
202 24			0 0000	Н	2.127906	-2.638713	0.411364			
323.34	0.5225	257.07	0.0028	Н	4.499821	-1.920439	0.401052			
				Н	5.065616	0.475438	-0.011566			
320 69	0 0024	256 16	0 0157	Н	3.257487	2.117275	-0.413609			
520.05	0.0024	230.10	0.0137	Н	-3.257427	2.117334	0.413396			
				Н	-5.065594	0.475528	0.011353			
316.8	0.0009	255.39	0.0034	Н	-4.499871	-1.920420	-0.400907			
				Н	-2.127977	-2.638763	-0.411155			

Table S2. TD-B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) calculations of triplet DBC and its Cartesian coordinates

E = -613.587596881 Hartree

λ_{max}	f	λ_{\max}	f		Cartesian Coordinates					
1 5 0 1 2 2	0 0004		0 2551	С	-1.220926	-0.911958	0.076791			
1581.22	0.0024	25/.5/	0.3551	С	-1.267712	0.511768	0.049152			
				С	0.00000	1.294821	0.077572			
493.2	0.0017	253.12	0.1231	С	1.267711	0.511768	0.049148			
				С	1.220926	-0.911960	0.076786			
459.29	0.0029	247.12	0.0067	С	0.00000	-1.664175	0.281399			
				С	-2.438574	-1.619380	-0.013023			
433 79	0 0373	245 84	0 0056	С	-3.651887	-0.947556	-0.142554			
-JJ./J	0.0375	243.04	0.0050	С	-3.677093	0.451450	-0.123772			
200 24	0 1 2 2 1	044 10	0 0 0 0 0 0	С	-2.489278	1.179764	-0.014149			
382.34	0.1331	244.12 0.2308	0.2308	С	2.489277	1.179764	-0.014143			
				С	3.677092	0.451450	-0.123766			
367.16	0.0312	237.47	0.0213	С	3.651886	-0.947556	-0.142557			
				С	2.438574	-1.619381	-0.013032			
335.68	0 0343	237 4	0.0117	0	0.00001	2.522763	0.075892			
555.00	0.0315	237.1	0.011/	Η	-2.393370	-2.703512	0.027189			
200 00	0 0007	220 04	0 0004	Η	-4.580197	-1.505989	-0.225232			
308.09	0.0007	229.04	0.0004	Η	-4.626458	0.976764	-0.186833			
				Η	-2.494301	2.265222	0.009750			
289.37	0.0055	227.19	0.0169	Η	2.494302	2.265222	0.009758			
				Η	4.626458	0.976764	-0.186821			
282.83	0.0707	223.87	0.0034	Н	4.580197	-1.505988	-0.225237			
				Η	2.393371	-2.703513	0.027175			

Table S3. TD-B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) calculations of singlet AN and its Cartesian coordinates

E = -613.601805465 Hartree

λ_{max}	f	λ_{max}	f		Cartesian Coordinates					
	0 0000	220 22	0 0000	С	-1.257125	-0.935665	-0.000055			
598.82	0.0000	339.33	0.0000	С	-1.269528	0.498315	-0.000037			
				С	0.00001	1.266950	-0.000096			
517.86	0.0031	337.74	0.0049	С	1.269529	0.498314	-0.000033			
				С	1.257124	-0.935662	-0.000061			
468.91	0.0063	331.42	0.0000	С	-0.00001	-1.555757	-0.000197			
				С	-2.490428	-1.635509	0.000006			
414 66	0 0414	207 22	0 0 0 2 2 2	С	-3.686255	-0.938316	0.000094			
111.00	0.0414	307.22	0.0232	С	-3.693166	0.469109	0.000116			
				С	-2.494757	1.174319	0.000041			
413.41	0.0243	306.50	0.0310	С	2.494759	1.174317	0.000056			
				С	3.693166	0.469106	0.000126			
396.36	0.0000	299.93	0.0000	С	3.686253	-0.938316	0.000083			
				С	2.490427	-1.635508	-0.00008			
384 11	0 0000	295 82	0 0010	0	0.00001	2.502987	-0.000122			
501.11	0.0000	275.02	0.0010	Н	-2.478936	-2.721281	-0.000020			
266 27	0 0000	205 70	0 0000	Н	-4.626877	-1.482278	0.000147			
366.27	0.0000	285.70	0.0003	Н	-4.638186	1.004789	0.000196			
				Н	-2.474766	2.259736	0.000051			
352.80	0.0000	283.43	0.0003	Н	2.474770	2.259735	0.000082			
				Н	4.638186	1.004786	0.000217			
343.71	0.1723	266.57	0.0039	Н	4.626874	-1.482281	0.000125			
0 10 1 / 1	0.1/10		0.0000	H	2.478934	-2.721280	-0.000047			

Table S4. TD-B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) calculations of triplet AN and its Cartesian coordinates

E = -614.288170904 Hartree

λ_{max}	f	λ_{\max}	f	Cartesian Coordinates				
C 4 2 7 0	0 0000		0 0001	С	-1.240609	-0.902048	-0.000110	
643.79	0.0000	307.99	0.0264	С	-1.262874	0.525198	-0.000077	
				С	0.00000	1.298817	-0.000106	
526.89	0.0011	305.56	0.0000	C	1.262874	0.525198	-0.000077	
				С	1.240609	-0.902048	-0.000110	
500 89	0 0135	286 29	0 0006	C	0.00000	-1.589215	-0.000278	
500.05	0.0133	200.27	0.0000	С	-2.476866	-1.598808	0.000027	
				С	-3.676713	-0.909528	0.000180	
436.84	0.0369	269.37	0.0009	C	-3.686687	0.497872	0.000165	
				С	-2.487905	1.202423	0.000030	
430.38	0.0416	265.28	0.0003	C	2.487905	1.202423	0.000030	
				C	3.686687	0.497872	0.000165	
211 50	0 0010	250 10	0 0000	C	3.676713	-0.909528	0.000180	
344.50	0.0010	259.10	0.0000	C	2.476866	-1.598808	0.000027	
				0	0.00000	2.535444	-0.000113	
343.77	0.1410	256.29	0.0176	H	-2.467478	-2.686086	0.000029	
				Н	-4.615359	-1.457016	0.000301	
337 28	0 0243	254 63	0 4719	H	-4.632310	1.032643	0.000238	
557.20	0.0215	231.03	0.1/1/	Н	-2.468409	2.287589	0.000001	
224 01	0 0000	040 00	0 0010	H	2.468409	2.287589	0.000001	
334.21	0.0000	249.89	0.0012	H	4.632310	1.032643	0.000238	
				H	4.615359	-1.457016	0.000301	
314.86	0.0226	247.93	0.0000	H	2.467478	-2.686086	0.000029	
===••••				н	0.000000	-2.676735	-0.000517	

Table S5. TD-B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) calculations of radical ANH· and its Cartesian coordinates

E = -614.031287028 Hartree

λ_{max}	f	λ_{max}	f	Cartesian Coordinates				
	0 0000	040.00	0 0000	С	1.243636	-0.879941	0.000024	
657.21	0.0000	243.00	0.0002	С	1.277641	0.548251	0.000018	
				С	0.00000	1.327974	0.00008	
513.64	0.0208	241.04	0.4188	С	-1.277641	0.548251	0.000018	
				С	-1.243636	-0.879941	0.000024	
152 22	0 0325	230 77	0 0002	С	0.00000	-1.546790	0.000065	
172.22	0.0525	230.11	0.0002	С	2.458254	-1.611441	-0.000014	
				С	3.673970	-0.939145	-0.000061	
428.04	0.3215	226.26	0.0001	С	3.691616	0.461168	-0.000019	
				С	2.496804	1.204457	0.000026	
300.64	0.0000	224.75	0.0078	С	-2.496804	1.204457	0.000026	
				С	-3.691616	0.461168	-0.000019	
	0 0 2 7 1	010 70	0 0000	С	-3.673970	-0.939145	-0.000061	
290.54	0.03/1	219.73	0.0023	С	-2.458254	-1.611441	-0.000014	
				0	0.00000	2.548037	-0.000026	
279.36	0.0000	215.56	0.0249	H	2.428399	-2.697463	-0.000017	
				H	4.605518	-1.495293	-0.000120	
265 19	0 0000	213 72	0 0002	H	4.642800	0.985338	-0.000025	
203.17	0.0000	213.72	0.0002	H	2.513449	2.289498	0.000063	
055 64			0 0 0 0 0	H	-2.513449	2.289498	0.000063	
255.64	0.0000	207.36	0.3707	H	-4.642800	0.985338	-0.000025	
				Н	-4.605518	-1.495293	-0.000120	
255.26	0.2509	206.08	0.0421	Н	-2.428399	-2.697463	-0.000017	
				H	0.00000	-2.635744	0.000266	

Table S6. TD-B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) calculations of ANH⁺ and its Cartesian coordinates

Figure S1. Kinetic traces were produced by ultrafast LFP ($\lambda_{ex} = 308 \text{ nm}$) of DDBC in acetonitrile. The kinetic traces were probed at 350, 360, 370, 380 and 400 nm, respectively and globally fitted in equation $\Delta OD = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2) + A_3$, where τ_1 is unlinked and τ_2 is linked. The value 83 ± 3 ps shown above is the common time constant τ_2 , which is assigned to the lifetime of ¹DBC in acetonitrile.

Figure S2. The transient spectra were generated by ultrafast LFP (308 nm) of DDBC in cyclohexane with time windows (a) 2–30 ps, (b) 40–200 ps and (c) 500–2500 ps.

Figure S3. Kinetic traces were produced by ultrafast LFP ($\lambda_{ex} = 308 \text{ nm}$) of DDBC in cyclohexane. The kinetic traces were probed at 350, 360, 370 and 380, respectively and globally fitted to the equation $\triangle OD = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2) + A_3$, where τ_1 is unlinked and τ_2 is linked. The value 72 ± 3 ps shown in the figure is the common time constant τ_2 , which is assigned to the lifetime of ¹DBC in cyclohexane. The kinetic traces are separated by 50 ps for clarity.

Figure S4. Kinetic traces were produced by ultrafast LFP ($\lambda_{ex} = 308 \text{ nm}$) of DDBC in cyclohexene. The kinetic traces were probed at 350, 360, 370 and 380, respectively and globally fitted to the equation $\triangle OD = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2) + A_3$, where τ_1 is unlinked and τ_2 is linked. The value 47 ± 3 ps shown in the figure is the common time constant τ_2 , which is assigned to the lifetime of ¹DBC in cyclohexene. The kinetic traces are separated by 50 ps for clarity.

Figure S5. Kinetic traces were produced by ultrafast LFP ($\lambda_{ex} = 308 \text{ nm}$) of DAN in acetonitrile. The kinetic traces were probed at 350 and 440, respectively and globally fitted to the equations $\triangle OD = A_1 \exp(-t/\tau_1) + A_2$ and $\triangle OD = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2) + A_3$, where τ_1 is linked. The value 87 ± 9 ps shown above is the common time constant τ_1 , which is assigned to the lifetime of ¹AN in acetonitrile. τ_2 is 24 ± 3 ps, which is assigned to the vibrational cooling of ¹AN.

Figure S6. Transient spectra were generated by ultrafast LFP ($\lambda_{ex} = 308$ nm) of DAN in cyclohexane with time windows of (a) 0.10–0.70 ps, (b) 1–20 ps and (c) 20–1000 ps.

Figure S7. Transient spectra were generated by ultrafast LFP ($\lambda_{ex} = 308$ nm) of DAN in methanol with time windows of (a) 0.25–0.70 ps, (b) 0.9–5 ps and (c) 5–50 ps.

Figure S8. Transient spectra were generated by ultrafast LFP ($\lambda_{ex} = 308$ nm) of DAN in 2,2,2-trifluoroethanol with a time window of 1–20 ps.