Photochemistry and DNA-affinity of some pyrimidine-substituted styryl-azinium iodides

A. Mazzoli,^a B. Carlotti,^a C. Bonaccorso,^b C. G. Fortuna,^b U. Mazzucato,^a G. Miolo,^c A. Spalletti^{a*}

^a Dipartimento di Chimica and Centro di Eccellenza Materiali Innovativi Nanostrutturati (CEMIN), Università di Perugia, 06123 Perugia, Italy ^bDipartimento di Scienze Chimiche, Università di Catania, 95125 Catania, Italy ^cDipartimento di Scienze Farmaceutiche, Università di Padova, 35131 Padova

Electronic Supplementary Information: computational results, linear dichroism spectra and fitting of the .

Table ESI 1 Computed parameters for the ground state and the first electronic transitions of compounds 1-3: formation enthalpy (ΔH_f° , kcal mol⁻¹), relative conformational abundance at 293 K (%), dipole moment (D) in the ground (μ_g) and excited (μ_e) states, dihedral angle (ϕ , degrees), absorption wavelength (λ , nm) and oscillator strength (f).

μ_{e} suites, under under (ψ , degrees), ubsorption wavelength (ν , mir) and oscinator sublight (ν).									
Compound	$\Delta { m H_f}^{\circ}$	%	φ	$\mu_{ m g}$	μ_{e}	λ	f	configuration	coeff.
1(A)	257.948	1.4	54.39°	20.32	6.55	348	0.96	H→L	0.64
						262	0.59	$H \rightarrow L+1$	-0.62
1(B)	255.460	98.6	2.59°	19.23	8.80	363	1.63	H→L	0.66
						259	0.23	$H \rightarrow L+1$	0.62
2(A)	270.821	0.6	-42.18°	16.48	1.81	365	1.46	H→L	0.65
						245	0.59	$H \rightarrow L+1, H-2 \rightarrow L$	0.46, -0.33
2(B)	267.827	99.4	-4.20°	15.50	3.65	371	1.93	H→L	0.66
						257	0.19	$H \rightarrow L+1, H-2 \rightarrow L$	0.35, 0.48
3	243.035	100	-27.34°	18.90	10.77	338	1.59	H→L	0.67
						220	0.36	H→L+1	-0.61

Fig. ESI 1 Molecular orbitals of **1** as derived by ZINDO/S method. The HOMO-LUMO configuration contributes to the main electronic transition with the highest coefficient.

Fig. ESI 2 Absorption, linear dichroism (LD) and reduced LD_r spectra for salmon DNA.

Fig. ESI 3 Absorption, linear dichroism (LD) and reduced LD_r spectra for the complex **1**-DNA at a [ligand]/[DNA] ratio of 0.04 (a) and 0.08 (b). LD for DNA is shown for comparison, black trace.

Fig. ESI 4 Absorption, linear dichroism (LD) and reduced LD_r spectra for the complex **2**-DNA at a [ligand]/[DNA] ratio of 0.04 (a) and 0.08 (b). LD for DNA is shown for comparison, black trace.

Fig. ESI 5 Absorption, linear dichroism (LD) and reduced LD_r spectra for the complex 3-DNA at a [ligand]/[DNA] ratio of 0.04 (a) and 0.08 (b). LD for DNA is shown for comparison, black trace.

Fig. ESI 6 Absorption, linear dichroism (LD) and reduced LD_r spectra for the complex **4**-DNA at a [ligand]/[DNA] ratio of 0.04 (a) and 0.08 (b). LD for DNA is shown for comparison, black trace.

Fig. ESI 7 Absorption, linear dichroism (LD) and reduced LD_r spectra for the complex **5**-DNA at a [ligand]/[DNA] ratio of 0.08. LD for DNA is shown for comparison, black trace.

Fig. ESI 8 Absorption, linear dichroism (LD) and reduced LD_r spectra for the complex **6**-DNA at a [ligand]/[DNA] ratio of 0.04 (a) and 0.08 (b). LD for DNA is shown for comparison, black trace.

Fig. ESI 9 Plot to obtain the association constant of the 1-DNA complex according to the eq. 1.

Fig. ESI 9 Plot to obtain the association constant of the 3-DNA complex according to the eq. 1.