## A quantum chemical investigation of the electronic structure of thionine<sup>†</sup>

## **Electronic Supporting Information**

Angela Rodriguez-Serrano,<sup>a</sup> Martha C. Daza,<sup>\*a</sup> Markus Doerr<sup>†b</sup> and Christel M. Marian<sup>‡c</sup>

 <sup>a</sup>Grupo de Bioquímica Teórica, Universidad Industrial de Santander, Carrera 27, Calle 9, Bucaramanga, Colombia.
<sup>b</sup>Facultad de Química Ambiental, Universidad Santo Tomás, Carrera 18 No. 9-27, Bucaramanga, Colombia.
<sup>c</sup>Institute of Theoretical and Computational Chemistry, Heinrich Heine University of Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany.

<sup>\*</sup>Fax: +57 763 23778, Tel: +57 763 23778; E-mail: mcdaza@uis.edu.co

<sup>†</sup>Fax: +57 76712677, Tel+57 76800801; E-mail: markusdoerr@gmx.de

<sup>🔸</sup> Fax: +49 (0)211 8113466, Tel: +49 (0)211 8113209; E-mail: Christel.Marian@uni-duesseldorf.de

<sup>&</sup>lt;sup>\*</sup>Geometries and vibrational frequencies of the ground and excited states are provided as molden files: S0.molden, S1.molden, S2.molden, T1.molden, T2.molden, T3.molden.

**Fig. 1** DFT/MRCI energies of the low-lying states of thionine along a linearly interpolated path between the  $S_0$  and  $S_1$  geometries. The singlet profiles are represented by solid lines and the triplet profiles by dashed lines.



**Fig. 2** Frontier BHLYP/TZVP Kohn-Sham molecular orbitals computed at the T<sub>3</sub>  $(n \rightarrow \pi^*)$  state minimum (isovalue 0.03) of thionine.



| Parameter                   | TZVP  | TZVPP | TZVP+R |
|-----------------------------|-------|-------|--------|
| <i>r</i> (C(11)-C(12))      | 1.358 | 1.357 | 1.358  |
| <i>r</i> (C(12)-C(13))      | 1.429 | 1.428 | 1.429  |
| <i>r</i> (C(11)-C(3))       | 1.430 | 1.428 | 1.430  |
| r(N(4)-C(3))                | 1.330 | 1.329 | 1.331  |
| r(C(3)-C(2))                | 1.438 | 1.437 | 1.437  |
| r(C(2)-C(14))               | 1.380 | 1.380 | 1.380  |
| r(C(2)-S(1))                | 1.751 | 1.738 | 1.750  |
| <i>r</i> (C(13)-C(14))      | 1.408 | 1.406 | 1.408  |
| <i>r</i> (C(13)-N(15))      | 1.345 | 1.344 | 1.346  |
| <i>r</i> (N(18)-H(19))      | 1.007 | 1.005 | 1.007  |
| <i>r</i> (N(18)-H(20))      | 1.007 | 1.005 | 1.007  |
| $\theta(S(1)-C(6)-C(7))$    | 118.3 | 118.4 | 118.2  |
| $\theta(S(1)-C(6)-C(5))$    | 120.6 | 120.6 | 120.7  |
| $\theta(C(2)-S(1)-C(6))$    | 103.1 | 103.6 | 103.1  |
| $\theta(N(4)-C(5)-C(10))$   | 117.2 | 117.3 | 117.2  |
| $\theta(N(4)-C(5)-C(6))$    | 125.7 | 125.5 | 125.6  |
| $\theta(C(3)-N(4)-C(5))$    | 124.3 | 124.3 | 124.3  |
| $\theta(C(6)-C(7)-C(8))$    | 120.3 | 120.3 | 120.3  |
| $\theta(C(5)-C(10)-C(9))$   | 121.8 | 121.8 | 121.8  |
| $\theta(C(5)-C(6)-C(7))$    | 121.1 | 121.1 | 121.1  |
| $\theta(C(10)-C(5)-C(6))$   | 117.2 | 117.2 | 117.2  |
| $\theta(C(8)-C(9)-C(10))$   | 120.3 | 120.3 | 120.3  |
| $\theta(C(7)-C(8)-C(9))$    | 119.4 | 119.4 | 119.3  |
| $\theta(N(18)-C(8)-C(9))$   | 119.8 | 119.7 | 119.8  |
| $\theta(N(18)-C(8)-C(7))$   | 120.9 | 120.9 | 120.9  |
| $\theta$ (C(8)-N(18)-H(19)) | 121.2 | 121.1 | 121.2  |
| $\theta$ (C(8)-N(18)-H(20)) | 121.7 | 121.6 | 121.7  |
| θ(H(19)-N(18)-H(20))        | 117.1 | 117.3 | 117.1  |

**Table 1** Selected geometrical parameters of the thionine ground state calculated with the B3LYP functional and the TZVP, TZVPP and TZVP+R basis sets. Bond lengths are reported in Å and angles in degrees (°).

**Table 2** Vertical singlet and triplet excitation energies  $\Delta E$  (eV) of thionine calculated using the TZVP+R and the TZVP basis sets.

| Electronic<br>State  | Electronic Structure <sup>a</sup>                                                                                                                   | DFT/MRCI<br>/TZVP+R//<br>B3LYP<br>/TZVP+R <sup>b</sup> | DFT/MRCI<br>/TZVP//<br>B3LYP<br>/TZVP+R <sup>b</sup> | DFT/MRCI<br>/TZVP//<br>B3LYP<br>/TZVP <sup>b</sup> | TD-B3LYP/TZVP+R//<br>B3LYP<br>/TZVP+R <sup>b</sup> | TD-B3LYP/TZVP//<br>B3LYP<br>/TZVP <sup>b</sup> |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------------------------|
| $S_0(1^1A_1)$        | (0.93) Ground State                                                                                                                                 |                                                        |                                                      |                                                    |                                                    |                                                |
| $S_1(1^1B_1)$        | $(0.80) \pi_{\rm H} \rightarrow \pi_{\rm L}^*$                                                                                                      | 2.29(0.832)                                            | 2.29(0.831)                                          | 2.29(0.833)                                        | 2.74(0.612)                                        | 2.74(0.613)                                    |
| $S_2(2^1A_1)$        | $(0.82) \pi_{H-1} \rightarrow \pi_{L}^{*}$                                                                                                          | 2.49(0.012)                                            | 2.48(0.012)                                          | 2.49(0.012)                                        | 2.72(0.010)                                        | 2.73(0.010)                                    |
| $S_3(1^1B_2)$        | $(0.79) n_{\text{H-4}} \rightarrow \pi_{\text{L}}^*$                                                                                                | 3.12(0.003)                                            | 3.11(0.003)                                          | 3.11(0.003)                                        | 3.21(0.001)                                        | 3.21(0.001)                                    |
| $S_4(3^1A_1)$        | $(0.52) \pi_{H-2} \rightarrow \pi_L^*$                                                                                                              | 3.55(0.014)                                            | 3.56(0.014)                                          | 3.56(0.014)                                        | $4.03(0.002)^{c}$                                  | $4.03(0.002)^{c}$                              |
|                      | $(0.21) \pi_{\mathrm{H}} \rightarrow \pi_{\mathrm{L}} * \pi_{\mathrm{H}} \rightarrow \pi_{\mathrm{L}} *$                                            |                                                        |                                                      |                                                    |                                                    |                                                |
| :                    | ÷                                                                                                                                                   | :                                                      | :                                                    | :                                                  | ÷                                                  | :                                              |
| $S_8(4^1A_1)$        | $(0.64) \pi_{\mathrm{H}} \rightarrow \pi_{\mathrm{L}^{+1}} *$                                                                                       | 4.37(0.132)                                            | 4.37(0.133)                                          | 4.37(0.133)                                        | 4.53(0.088)                                        | 4.53(0.089)                                    |
| $S_9(3^1B_1)$        | $(0.50) \pi_{\mathrm{H}} \rightarrow \pi_{\mathrm{L}+2}^{*}$                                                                                        | 4.41(0.044)                                            | 4.42(0.058)                                          | 4.42(0.056)                                        | 4.61(0.024)                                        | 4.62(0.027)                                    |
|                      | $(0.23) \pi_{H-1} \rightarrow \pi_{L+1}^{*}$                                                                                                        |                                                        |                                                      |                                                    |                                                    |                                                |
| $S_{10}(4^1B_1)$     | $\begin{array}{c} (0.34) \ \pi_{H-1} \rightarrow \pi_{L} * \pi_{H} \rightarrow \pi_{L} * \\ (0.20) \ \pi_{H-1} \rightarrow \pi_{L+1} * \end{array}$ | 4.57(0.532)                                            | 4.57(0.526)                                          | 4.57(0.526)                                        | $5.02(1.063)^d$                                    | $5.02(1.058)^d$                                |
| ÷                    | ÷                                                                                                                                                   | :                                                      | :                                                    | :                                                  | :                                                  | :                                              |
| $S_{12}(5^{1}B_{1})$ | $(0.33) \pi_{H-5} \rightarrow \pi_L^*$                                                                                                              | 4.89(0.199)                                            | 4.89(0.200)                                          | 4.90(0.201)                                        | $5.48(0.008)^{e}$                                  | $5.50(0.010)^{e}$                              |
| .2 ( .)              | $(0.14) \pi_{\rm H} \rightarrow \pi_{\rm L} * \pi_{\rm H} \rightarrow \pi_{\rm L+1} *$                                                              | · · · ·                                                | · · · ·                                              | · · · ·                                            | × ,                                                | ( )                                            |
|                      | $(0.12) \pi_{\rm H} \rightarrow \pi_{\rm L+2}^{*}$                                                                                                  |                                                        |                                                      |                                                    |                                                    |                                                |
| $T_1(1^3B_1)$        | $(0.92) \pi_{\rm H} \rightarrow \pi_{\rm L}^*$                                                                                                      | 1.63                                                   | 1.63                                                 | 1.63                                               | 1.51                                               | 1.53                                           |
| $T_2(1^3A_1)$        | $(0.88) \pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^*$                                                                                              | 2.11                                                   | 2.10                                                 | 2.11                                               | 2.01                                               | 2.03                                           |
| $T_3(1^3B_2)$        | $(0.81)$ $n_{\text{H-4}} \rightarrow \pi_{\text{L}}^*$                                                                                              | 2.78                                                   | 2.77                                                 | 2.78                                               | 2.60                                               | 2.61                                           |
| $T_4(2^3A_1)$        | $(0.78) \pi_{\text{H-2}} \rightarrow \pi_{\text{L}}^*$                                                                                              | 3.12                                                   | 3.12                                                 | 3.12                                               | 3.00                                               | 3.01                                           |

<sup>*a*</sup> Dominant contributions at the DFT/MRCI/TZVP level in parentheses. <sup>*b*</sup> Oscillator strengths (length form) in parentheses. <sup>*c*</sup>The dominant contribution of these states is a combination of two single excitations:  $\pi_{H-2} \rightarrow \pi_L^*$  and  $\pi_H \rightarrow \pi_{L+1}^*$ . <sup>*d*</sup>The dominant contribution of these states is a combination of two single excitations:  $\pi_{H-3} \rightarrow \pi_L^*$ . <sup>*c*</sup>The dominant contribution of these states is a single excitation:  $\pi_{H-3} \rightarrow \pi_L^*$ .

|                | $S_1$      |                       |                                         | $S_2$                                             |            |                 |                                                   |                                         |
|----------------|------------|-----------------------|-----------------------------------------|---------------------------------------------------|------------|-----------------|---------------------------------------------------|-----------------------------------------|
| Step           | $\Delta E$ | f(L)                  | DC                                      | DC                                                | $\Delta E$ | f(L)            | DC                                                | DC                                      |
|                |            | <i>J</i> ( <b>L</b> ) | $\pi_{\rm H} \rightarrow \pi_{\rm L}^*$ | $\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}$ |            | $J(\mathbf{L})$ | $\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}$ | $\pi_{\rm H} \rightarrow \pi_{\rm L}^*$ |
| $\mathbf{S}_1$ | 2.270      | 0.790                 | 0.800                                   | -                                                 | 2.44       | 0.010           | 0.815                                             | -                                       |
| 1              | 2.269      | 0.790                 | 0.799                                   | -                                                 | 2.42       | 0.011           | 0.815                                             | -                                       |
| 2              | 2.269      | 0.787                 | 0.796                                   | -                                                 | 2.41       | 0.015           | 0.813                                             | -                                       |
| 3              | 2.271      | 0.777                 | 0.789                                   | -                                                 | 2.39       | 0.025           | 0.806                                             | -                                       |
| 4              | 2.274      | 0.758                 | 0.774                                   | -                                                 | 2.38       | 0.045           | 0.792                                             | 0.024                                   |
| 5              | 2.277      | 0.722                 | 0.746                                   | 0.053                                             | 2.37       | 0.081           | 0.764                                             | 0.051                                   |
| 6              | 2.281      | 0.664                 | 0.698                                   | 0.101                                             | 2.37       | 0.139           | 0.716                                             | 0.098                                   |
| 7              | 2.284      | 0.582                 | 0.630                                   | 0.171                                             | 2.37       | 0.221           | 0.646                                             | 0.166                                   |
| 8              | 2.287      | 0.488                 | 0.549                                   | 0.254                                             | 2.38       | 0.315           | 0.563                                             | 0.246                                   |
| 9              | 2.385      | 0.404                 | 0.323                                   | 0.484                                             | 2.29       | 0.399           | 0.334                                             | 0.472                                   |
| 10             | 2.400      | 0.476                 | 0.385                                   | 0.420                                             | 2.29       | 0.327           | 0.398                                             | 0.410                                   |
| $S_2$          | 2.419      | 0.533                 | 0.432                                   | 0.371                                             | 2.3        | 0.269           | 0.448                                             | 0.362                                   |

**Table 3** DFT/MRCI energies ( $\Delta E$ ), Oscillator strengths (f(L)) and dominant contributions (DC) for each of the linearly interpolated geometries between the S<sub>1</sub> and the S<sub>2</sub> minima calculated at the DFT/MRCI/TZVP level.