A theoretical study of thionine: Spin-orbit coupling and intersystem crossing

Electronic Supporting Information

Angela Rodriguez-Serrano,^{*a,b*} Vidisha Rai-Constapel,^{*b*} Martha C. Daza,^{**a*} Markus Doerr^{†*a,c*} and Christel M. Marian^{‡*b*}

^aGrupo de Bioquímica Teórica, Universidad Industrial de Santander, Carrera 27, Calle 9, Bucaramanga, Colombia.

^bInstitute of Theoretical and Computational Chemistry, Heinrich Heine University of Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany.

^cFacultad de Química Ambiental, Universidad Santo Tomás, Carrera 18 No. 9-27, Bucaramanga, Colombia.

^{*}Fax: +57 763 23778, Tel: +57 763 23778; E-mail: mcdaza@uis.edu.co

[†]Fax: +57 76712677, Tel+57 76800801; E-mail: markusdoerr@gmx.de

[‡]Fax: +49 (0)211 8113466, Tel: +49 (0)211 8113209; E-mail: Christel.Marian@uni-duesseldorf.de

Channal	A Trad / N	vibr. SO	Acceptors	Interval	Levels	1r /a ⁻¹
Channel	$\Delta E / e v$	# _{derivs}	# _{acc}	η/cm ⁻¹	# _{v'}	K _{ISC} /S
$S_1 \rightarrow T_{1x}$	0.64	12	25	0.001	$5 \ge 10^2$	$1.07 \text{ x } 10^{0}$
$S_1 \rightarrow T_{1x}$	0.64	12	25	0.01	$6 \ge 10^3$	4.43×10^{1}
$S_1 \rightarrow T_{1x}$	0.64	12	25	0.1	$6 \ge 10^4$	2.73×10^3
$S_1 \rightarrow T_{1x}$	0.64	12	25	1	6 x 10 ⁵	1.96 x 10 ³
$S_1 \rightarrow T_{1x}$	0.64	12	25	10	6 x 10 ⁶	2.57×10^3
$S_1 \rightarrow T_{1x}$	0.64	12	25	100	6 x 10 ⁷	3.28×10^3
$S_1 \rightarrow T_{1x}$	0.64	12	49	0.001	$3 \ge 10^4$	2.75×10^3
$S_1 \rightarrow T_{1x}$	0.64	12	49	0.01	3 x 10 ⁵	3.36 x 10 ⁵
$S_1 \rightarrow T_{1x}$	0.64	12	49	0.1	$3 \ge 10^6$	$2.40 \ge 10^5$
$S_1 \rightarrow T_{1x}$	0.64	12	49	1	3×10^{7}	3.63×10^5
$S_1 \rightarrow T_{1x}$	0.64	12	49	10	$1 \ge 10^8$	7.51 x 10 ⁵

Table S1 Calculated rate constants k_{ISC} for the $S_1 \rightarrow T_{1x}$ channel. Remaining columns: adiabatic energy difference ΔE^{ad} , number of derivatives with respect of out-of-plane modes ($\#_{derivs}$), width of the search interval η , number of accepting modes within the search interval ($\#_{acc}$) and number of final state vibrational levels within the search interval ($\#_{v}$).

Table S2 Calculated rate constants k_{ISC} for the $S_1 \rightarrow T_{1z}$ channel. Remaining columns: adiabatic energy difference ΔE^{ad} , number of derivatives with respect of out-of-plane modes ($\#_{derivs}$), width of the search interval η , number of accepting modes within the search interval ($\#_{acc}$) and number of final state vibrational levels within the search interval ($\#_{v}$).

Channel	AF ^{ad} /aV	vibr. SO	Acceptors	Interval	Levels	k /s ⁻¹
Channel	ΔE /ev	# _{derivs}	# _{acc}	η/cm ⁻¹	# _{v'}	K _{ISC} /S
$S_1 \rightarrow T_{1z}$	0.64	11	25	0.001	$4 \ge 10^2$	1.66 x 10 ¹
$S_1 \rightarrow T_{1z}$	0.64	11	25	0.01	4×10^{3}	$1.27 \text{ x } 10^2$
$S_1 \rightarrow T_{1z}$	0.64	11	25	0.1	$4 \ge 10^4$	3.62×10^3
$S_1 \rightarrow T_{1z}$	0.64	11	25	1	$4 \ge 10^5$	5.10×10^3
$S_1 \rightarrow T_{1z}$	0.64	11	25	10	$4 \ge 10^{6}$	3.96 x 10 ³
$S_1 \rightarrow T_{1z}$	0.64	11	25	100	$4 \ge 10^7$	4.31×10^3
$S_1 \rightarrow T_{1z}$	0.64	11	49	0.001	$2 \ge 10^4$	$4.51 \ge 10^4$
$S_1 \rightarrow T_{1z}$	0.64	11	49	0.01	$2 \ge 10^5$	1.98 x 10 ⁵
$S_1 \rightarrow T_{1z}$	0.64	11	49	0.1	$2 \ge 10^{6}$	2.14 x 10 ⁵
$S_1 \rightarrow T_{1z}$	0.64	11	49	1	2×10^7	4.15 x 10 ⁶
$S_1 \rightarrow T_{1z}$	0.64	11	49	10	$1 \ge 10^7$	1.56 x 10 ⁵

Channal	A Ead/oV	vibr. SO	Acceptors	Interval	Levels	1r /a ⁻¹
Channel	$\Delta E^{-}/eV$	# _{derivs}	# _{acc}	η/cm ⁻¹	$\#_{v}$	K _{ISC} /S
$S_1 \rightarrow T_{2x}$	0.30	11	25	0.001	6	2.27×10^6
$S_1 \rightarrow T_{2x}$	0.30	11	25	0.01	33	$1.50 \ge 10^8$
$S_1 \rightarrow T_{2x}$	0.30	11	25	0.1	3×10^{2}	9.73×10^7
$S_1 \rightarrow T_{2x}$	0.30	11	25	1	3×10^{3}	$1.03 \ge 10^{8}$
$S_1 \rightarrow T_{2x}$	0.30	11	25	10	3×10^{4}	1.28 x 10°
$S_1 \rightarrow T_{2x}$	0.30	11	25	100	3×10^{3}	$1.40 \ge 10^{\circ}$
$S_1 \rightarrow T_{2x}$	0.30	11	49	0.001	42	4.86 x 10′
$S_1 \rightarrow T_{2x}$	0.30	11	49	0.01	5×10^{2}	$1.96 \times 10^{\circ}$
$S_1 \rightarrow T_{2x}$	0.30	11	49	0.1	5×10^{-5}	1.55×10^{8}
$S_1 \rightarrow T_{2x}$	0.30	11	49	1	5×10^{-105}	$2.81 \times 10^{\circ}$
$S_1 \rightarrow T_{2x}$	0.30	11	49	10	5×10^{5}	$2.79 \times 10^{\circ}$
$S_1 \rightarrow T_{2x}$	0.30	11	49	100	$5 \times 10^{\circ}$	$2.94 \times 10^{\circ}$
$S_1 \rightarrow T_{2x}$	0.30	11	72	0.001	9×10^{-5}	5.16×10^{7}
$S_1 \rightarrow T_{2x}$	0.30	11	72	0.01	9×10^{-1}	$2.06 \times 10^{\circ}$
$S_1 \rightarrow T_{2x}$	0.30	11	72	0.1	9×10^{5}	$1.89 \times 10^{\circ}$
$S_1 \rightarrow T_{2x}$	0.30	11	72	l	$9 \times 10^{\circ}$	$3.13 \times 10^{\circ}$
$S_1 \rightarrow T_{2x}$	0.30	11	72	10	2×10^{7}	3.07×10^{8}
$S_1 \rightarrow T_{2x}$	0.30	11	72	100	$2 \times 10^{\circ}$	$3.23 \times 10^{\circ}$
$S_1 \rightarrow T_{2x}$	0.30	$1(v_1)$	25	0.001	6	4.69×10^{-7}
$S_1 \rightarrow T_{2x}$	0.30	$1(v_1)$	25	0.01	33	3.51×10^{7}
$S_1 \rightarrow T_{2x}$	0.30	$1(v_1)$	25	0.1	3×10^{2}	9.52×10^{7}
$S_1 \rightarrow T_{2x}$	0.30	$1(v_1)$	25	l	3×10^{-5}	3.11×10^{7}
$S_1 \rightarrow T_{2x}$	0.30	$1(v_1)$	25	10	3×10^{-105}	4.00×10^{7}
$S_1 \rightarrow T_{2x}$	0.30	$1(v_1)$	25	100	3×10^{3}	5.10×10^{7}
$S_1 \rightarrow T_{2x}$	0.30	$1(v_1)$	49	0.001	42	1.46×10^{9}
$S_1 \rightarrow T_{2x}$	0.30	$1(v_1)$	49	0.01	5×10^{-2}	$1.24 \times 10^{\circ}$
$S_1 \rightarrow T_{2x}$	0.30	$1(v_1)$	49	0.1	5×10^{3}	$1.28 \times 10^{\circ}$
$S_1 \rightarrow T_{2x}$	0.30	$1(v_1)$	49	10	5×10^{-5}	$1.44 \times 10^{\circ}$
$S_1 \rightarrow I_{2x}$	0.30	$1(v_1)$	49	10	$5 \times 10^{\circ}$	$1.04 \times 10^{\circ}$
$S_1 \rightarrow I_{2x}$	0.30	$1(v_1)$	49	100	$5 \times 10^{-10^3}$	1.12×10^{-1}
$S_1 \rightarrow I_{2x}$	0.30	$1(v_1)$	72	0.001	$9 \times 10^{-10^4}$	1.59×10^{9}
$S_1 \rightarrow I_{2x}$	0.30	$1(v_1)$	72	0.01	9×10^{5}	1.30×10^{9}
$S_1 \rightarrow I_{2x}$	0.30	$1(v_1)$	12	0.1	9 x 10	$1.43 \times 10^{\circ}$
$S_1 \rightarrow I_{2x}$	0.30	0	25	0.001	0	2.30×10^{9}
$S_1 \rightarrow I_{2x}$	0.30	6	25 25	0.01	33 2 - 10 ²	1.53×10^{9} $1.07 = 10^{8}$
$S_1 \rightarrow I_{2x}$	0.30	0	25 25	0.1	3×10^{3}	1.07×10^{7}
$S_1 \rightarrow I_{2x}$	0.30	6	25	10	3×10^{4}	9.81×10^{8}
$S_1 \rightarrow I_{2x}$	0.30	6	25	10	3×10	1.26×10^{9}
$S_1 \rightarrow I_{2x}$	0.30	6	25	100	3 X 10°	1.26×10^{3}
$S_1 \rightarrow I_{2x}$	0.30	6	49	0.001	42	4.72×10^{8}
$S_1 \rightarrow I_{2x}$	0.30	6	49	0.01	5×10^{-5}	$1.88 \times 10^{\circ}$
$S_1 \rightarrow I_{2x}$	0.30	0	49	0.1	5×10^{3}	$1.62 \times 10^{\circ}$
$S_1 \rightarrow I_{2x}$	0.30	0	49	1	5×10^{5}	2.70×10^{3}
$S_1 \rightarrow I_{2x}$	0.30	0	49	10	5×10^{6}	$2.72 \times 10^{\circ}$
$S_1 \rightarrow I_{2x}$	0.30	6	49	100	5 x 10°	2.73×10^{3}

 $\textbf{Table S3} \text{ Calculated rate constants } k_{ISC} \text{ for the } S_1 \rightarrow T_{2x} \text{ channel. Remaining columns: adiabatic energy difference } \Delta E^{ad}, \text{ number of } S_1 \rightarrow T_{2x} \text{ channel. Remaining columns: adiabatic energy difference } \Delta E^{ad}, \text{ number of } S_1 \rightarrow T_{2x} \text{ channel. Remaining columns: adiabatic energy difference } \Delta E^{ad}, \text{ number of } S_1 \rightarrow T_{2x} \text{ channel. Remaining columns: } S_1 \rightarrow T_{2x} \text{ channel. Remaining columns: } S_1 \rightarrow T_{2x} \text{ channel. } S_1 \rightarrow T_{2x} \text{ channel.$ derivatives with respect of out-of-plane modes ($\#_{derivs}$), width of the search interval η , number of accepting modes within the search interval ($\#_{acc}$) and number of final state vibrational levels within the search interval ($\#_{v'}$).

Channel	A Ead/- XZ	vibr. SO	Acceptors	Interval	Levels	1- 1-1
Channel	$\Delta E^{-}/eV$	# _{derivs}	# _{acc}	η/cm ⁻¹	# _{v'}	K _{ISC} /S
$S_1 \rightarrow T_{2z}$	0.30	12	25	0.001	3	2.87×10^2
$S_1 \rightarrow T_{2z}$	0.30	12	25	0.01	33	2.49 x 10 ⁷
$S_1 \rightarrow T_{2z}$	0.30	12	25	0.1	$4 \ge 10^2$	1.93 x 10 ⁷
$S_1 \rightarrow T_{2z}$	0.30	12	25	1	$4 \ge 10^3$	7.70×10^7
$S_1 \rightarrow T_{2z}$	0.30	12	25	10	$4 \ge 10^4$	$6.34 \text{ x } 10^7$
$S_1 \rightarrow T_{2z}$	0.30	12	25	100	$4 \ge 10^5$	2.93×10^7
$S_1 \rightarrow T_{2z}$	0.30	12	49	0.001	28	2.14×10^3
$S_1 \rightarrow T_{2z}$	0.30	12	49	0.01	3×10^2	2.67×10^7
$S_1 \rightarrow T_{2z}$	0.30	12	49	0.1	$4 \ge 10^3$	$6.30 \ge 10^7$
$S_1 \rightarrow T_{2z}$	0.30	12	49	1	$4 \ge 10^4$	9.16 x 10 ⁷
$S_1 \rightarrow T_{2z}$	0.30	12	49	10	$4 \ge 10^5$	$1.60 \ge 10^8$
$S_1 \rightarrow T_{2z}$	0.30	12	49	100	$4 \ge 10^{6}$	1.98 x 10 ⁸
$S_1 \rightarrow T_{2z}$	0.30	12	72	0.001	5×10^3	7.32×10^6
$S_1 \rightarrow T_{2z}$	0.30	12	72	0.01	$5 \ge 10^4$	8.81 x 10 ⁷
$S_1 \rightarrow T_{2z}$	0.30	12	72	0.1	$1 \ge 10^5$	1.39 x 10 ⁸
$S_1 \rightarrow T_{2z}$	0.30	12	72	1	$1 \ge 10^{6}$	1.39 x 10 ⁸
$S_1 \rightarrow T_{2z}$	0.30	12	72	10	$5 \ge 10^7$	2.33 x 10 ⁸
$S_1 \rightarrow T_{2z}$	0.30	$1(v_8)$	25	0.001	3	1.39 x 10 ³
$S_1 \rightarrow T_{2z}$	0.30	$1(v_8)$	25	0.01	33	2.69 x 10 ⁷
$S_1 \rightarrow T_{2z}$	0.30	$1(v_8)$	25	0.1	$4 \ge 10^2$	3.65 x 10 ⁶
$S_1 \rightarrow T_{2z}$	0.30	$1(v_8)$	25	1	4×10^{3}	1.15×10^7
$S_1 \rightarrow T_{2z}$	0.30	$1(v_8)$	25	10	$4 \ge 10^4$	2.97 x 10 ⁷
$S_1 \rightarrow T_{2z}$	0.30	$1(v_8)$	25	100	$4 \ge 10^5$	3.70×10^7
$S_1 \rightarrow T_{2z}$	0.30	$1(v_8)$	49	0.001	28	1.54 x 10 ³
$S_1 \rightarrow T_{2z}$	0.30	$1(v_8)$	49	0.01	3×10^2	2.74×10^7
$S_1 \rightarrow T_{2z}$	0.30	$1(v_8)$	49	0.1	4×10^{3}	$1.48 \ge 10^7$
$S_1 \rightarrow T_{2z}$	0.30	$1(v_8)$	49	1	$4 \ge 10^4$	3.60×10^7
$S_1 \rightarrow T_{2z}$	0.30	$1(v_8)$	49	10	$4 \ge 10^5$	8.66 x 10 ⁷
$S_1 \rightarrow T_{2z}$	0.30	$1(v_8)$	49	100	$4 \ge 10^{6}$	$1.20 \ge 10^8$
$S_1 \rightarrow T_{2z}$	0.30	$1(v_{20})$	25	0.001	3	6.63×10^1
$S_1 \rightarrow T_{2z}$	0.30	$1(v_{20})$	25	0.01	33	$1.42 \text{ x } 10^3$
$S_1 \rightarrow T_{2z}$	0.30	$1(v_{20})$	25	0.1	$4 \ge 10^2$	3.13 x 10 ⁵
$S_1 \rightarrow T_{2z}$	0.30	$1(v_{20})$	25	1	4×10^{3}	6.33 x 10 ⁶
$S_1 \rightarrow T_{2z}$	0.30	$1(v_{20})$	25	10	$4 \ge 10^4$	1.05×10^7
$S_1 \rightarrow T_{2z}$	0.30	$1(v_{20})$	25	100	$4 \ge 10^5$	1.25×10^7
$S_1 \rightarrow T_{2z}$	0.30	$1(v_{20})$	49	0.001	28	1.62×10^2
$S_1 \rightarrow T_{2z}$	0.30	$1(v_{20})$	49	0.01	3×10^2	9.59 x 10 ⁴
$S_1 \rightarrow T_{2z}$	0.30	$1(v_{20})$	49	0.1	4×10^{3}	1.67 x 10 ⁶
$S_1 \rightarrow T_{2z}^{-1}$	0.30	$1(v_{20})$	49	1	$4 \ge 10^4$	3.71 x 10 ⁷
$S_1 \rightarrow T_{2z}$	0.30	$1(v_{20})$	49	10	$4 \ge 10^5$	4.00×10^7
$S_1 \rightarrow T_{2z}$	0.30	$1(v_{20})$	49	100	$4 \ge 10^{6}$	2.99 x 10 ⁷

 $\textbf{Table S4} \text{ Calculated rate constants } k_{ISC} \text{ for the } S_1 \rightarrow T_{2z} \text{ channel. Remaining columns: adiabatic energy difference } \Delta E^{ad}, \text{ number of } S_1 \rightarrow T_{2z} \text{ channel. Remaining columns: adiabatic energy difference } \Delta E^{ad}, \text{ number of } S_1 \rightarrow T_{2z} \text{ channel. Remaining columns: adiabatic energy difference } \Delta E^{ad}, \text{ number of } S_1 \rightarrow T_{2z} \text{ channel. Remaining columns: } S_1 \rightarrow S_2 \text{ channel. Remaining columns: } S_1 \rightarrow S_2 \text{ channel. } S_2 \rightarrow S_2 \text{ channel. } S_1 \rightarrow S_2 \text{ channel. } S_2 \rightarrow S_2 \rightarrow S_2$ derivatives with respect of out-of-plane modes ($\#_{derivs}$), width of the search interval η , number of accepting modes within the search interval ($\#_{acc}$) and number of final state vibrational levels within the search interval ($\#_{v'}$).

Modes	\overline{V}_i / cm^{-1}	$\frac{\partial \left\langle S_2 \left \hat{H}_{so} \right T_{1x} \right\rangle}{\partial q_i}$	$\frac{\partial \left\langle S_2 \left \hat{H}_{so} \right T_{1y} \right\rangle}{\partial q_i}$	$\frac{\partial \left\langle S_2 \left \hat{H}_{so} \right T_{2x} \right\rangle}{\partial q_i}$	$\frac{\partial \left\langle S_2 \left \hat{H}_{so} \right T_{2y} \right\rangle}{\partial q_i}$
1	20.0	0.18	1 21	1.07	0.62
2	20.0 42.5	-0.18	0.21	0.10	-0.02
2	43.5	0.03	-0.21	-0.19	0.12
5	/0.0	0.32	-0.02	-0.44	0.00
4	155.1	0.20	-0.18	-0.37	0.11
6	170.1	-0.08	0.31	0.05	0.05
7	181.9	-0.05	-0.03	-0.02	-0.08
9	250.5	-0.16	-0.05	0.10	0.04
10	269.5	0.31	0.09	-0.37	-0.15
11	291.5	0.09	1.10	-0.17	-0.82
13	317.6	0.39	0.27	-0.44	-0.33
15	386.5	0.41	0.64	-0.37	-0.36
17	398.5	0.48	-0.28	-0.60	0.20
18	429.1	-0.61	-0.60	0.63	0.67
20	433.8	-0.32	0.65	0.17	-0.56
23	534.6	-0.06	0.11	-0.18	-0.33
24	545.6	-0.20	0.01	0.08	-0.01
25	555.1	0.18	0.34	0.00	-0.40
29	747.7	-0.37	-0.72	0.48	0.32
30	788.9	0.43	-0.46	-0.28	0.26
32	831.5	0.41	0.06	-0.45	-0.10
33	836.3	0.12	0.47	-0.26	-0.39
37	924.4	-0.29	-0.10	0.39	0.10
38	928.1	-0.01	0.16	-0.22	-0.04

Table S5 Harmonic frequencies v_i of the A" out-of-plane vibrational modes for the S₂ ($\pi_{H-1} \rightarrow \pi_L^*$) state. Derivatives of the SOMEs with respect to the corresponding (dimensionless) normal coordinates at the S₂ ($\pi_{H-1} \rightarrow \pi_L^*$) DFT/MRCI minimum.

Table S6 Calculated rate constants k_{ISC} for the $S_2 \rightarrow T_{i(x/y)}$ (*i* = 1, 2) channels. Remaining columns: adiabatic energy difference ΔE^{ad} , number of derivatives with respect of out-of-plane modes ($\#_{derivs}$), width of the search interval η , number of accepting modes within the search interval ($\#_{acc}$) and number of final state vibrational levels within the search interval ($\#_{v'}$).

I	A Trad (A Z	vibr. SO	Acceptors	Interval	Levels	1 (-1
Channel	$\Delta E^{aa}/eV$	# _{derivs}	#acc	η/cm ⁻¹	# _{v'}	K _{ISC} /S
$S_2 \rightarrow T_{1x}$	0.66	23	49	0.001	$2 \ge 10^2$	2.10×10^4
$S_2 \rightarrow T_{1x}$	0.66	23	49	0.01	2×10^3	6.53 x 10 ⁵
$S_2 \rightarrow T_{1x}$	0.66	23	49	0.1	$2 \ge 10^4$	5.71 x 10 ⁶
$S_2 \rightarrow T_{1x}$	0.66	23	49	1	$2 \ge 10^5$	5.56 x 10 ⁶
$S_2 \rightarrow T_{1x}$	0.66	23	49	10	$2 \ge 10^{6}$	3.17 x 10 ⁶
$S_2 \rightarrow T_{1x}$	0.66	23	49	100	-	-
$S_2 \rightarrow T_{1v}$	0.66	23	49	0.001	$2 \ge 10^2$	4.53×10^4
$S_2 \rightarrow T_{1y}$	0.66	23	49	0.01	2×10^3	1.64 x 10 ⁶
$S_2 \rightarrow T_{1v}$	0.66	23	49	0.1	$2 \ge 10^4$	4.02×10^6
$S_2 \rightarrow T_{1y}$	0.66	23	49	1	$2 \ge 10^5$	8.63 x 10 ⁶
$S_2 \rightarrow T_{1y}$	0.66	23	49	10	$2 \ge 10^{6}$	5.67 x 10 ⁶
$S_2 \rightarrow T_{1y}$	0.66	23	49	100	-	-
$S_2 \rightarrow T_{2x}$	0.66	23	49	0.001	0	-
$S_2 \rightarrow T_{2x}$	0.32	23	49	0.01	3	3.91 x 10 ¹
$S_2 \rightarrow T_{2x}$	0.32	23	49	0.1	41	5.14 x 10 ⁵
$S_2 \rightarrow T_{2x}$	0.32	23	49	1	$4 \ge 10^2$	7.40 x 10 ⁶
$S_2 \rightarrow T_{2x}$	0.32	23	49	10	5×10^3	3.22×10^6
$S_2 \rightarrow T_{2x}$	0.32	23	49	100	$5 \ge 10^4$	2.62×10^6
$S_2 \rightarrow T_{2v}$	0.32	23	49	0.001	0	-
$S_2 \rightarrow T_{2y}$	0.32	23	49	0.01	3	1.63×10^3
$S_2 \rightarrow T_{2v}$	0.32	23	49	0.1	41	9.43 x 10 ⁴
$S_2 \rightarrow T_{2y}$	0.32	23	49	1	$4 \ge 10^2$	$2.68 \ge 10^5$
$S_2 \rightarrow T_{2v}$	0.32	23	49	10	5×10^3	4.03 x 10 ⁶
$S_2 \rightarrow T_{2v}$	0.32	23	49	100	$5 \ge 10^4$	3.58 x 10 ⁶

Channal	A Ead/oW	vibr. SO	Acceptors	Interval	Levels	1r /n ⁻¹
Channel	ΔE /ev	# _{derivs}	# _{acc}	η/cm ⁻¹	$\#_{v'}$	K _{ISC} /S
$S_1 \rightarrow T_{1x}$	0.68	12	49	0.001	7×10^4	1.34×10^4
$S_1 \rightarrow T_{1x}$	0.68	12	49	0.01	7×10^{5}	2.05×10^4
$S_1 \rightarrow T_{1x}$	0.68	12	49	0.1	7×10^{6}	3.06×10^{5}
$S_1 \rightarrow T_{1x}$	0.68	12	49	1	$7 \ge 10^7$	2.44 x 10 ⁵
$S_1 \rightarrow T_{1z}$	0.68	11	49	0.001	5×10^4	2.04×10^4
$S_1 \rightarrow T_{1z}$	0.68	11	49	0.01	$5 \ge 10^5$	2.54 x 10 ⁵
$S_1 \rightarrow T_{1z}$	0.68	11	49	0.1	$5 \ge 10^6$	1.27 x 10 ⁶
$S_1 \rightarrow T_{1z}$	0.68	11	49	1	$5 \ge 10^7$	$4.00 \ge 10^5$
$S_1 \rightarrow T_{2x}$	0.19	11	49	0.001	4	3.60×10^5
$S_1 \rightarrow T_{2x}$	0.19	11	49	0.01	41	2.08×10^8
$S_1 \rightarrow T_{2x}$	0.19	11	49	0.1	$5 \ge 10^2$	7.79 x 10 ⁷
$S_1 \rightarrow T_{2x}$	0.19	11	49	1	$5 \ge 10^3$	1.31 x 10 ⁹
$S_1 \rightarrow T_{2x}$	0.21	11	49	0.001	3	8.41 x 10 ⁴
$S_1 \rightarrow T_{2x}$	0.21	11	49	0.01	78	3.49 x 10 ⁷
$S_1 \rightarrow T_{2x}$	0.21	11	49	0.1	8 x 10 ²	1.29 x 10 ⁹
$S_1 \rightarrow T_{2x}$	0.21	11	49	1	8 x 10 ³	6.21 x 10 ⁸
$S_1 \rightarrow T_{2x}$	0.22	11	49	0.01	$1 \ge 10^2$	6.22 x 10 ⁸
$S_1 \rightarrow T_{2x}$	0.22	11	49	0.1	$1 \ge 10^3$	2.12×10^8
$S_1 \rightarrow T_{2x}$	0.22	11	49	1	$1 \ge 10^4$	1.98 x 10 ⁸
$S_1 \rightarrow T_{2x}$	0.31	11	49	0.001	90	9.33 x 10 ⁶
$S_1 \rightarrow T_{2x}$	0.31	11	49	0.01	$9 \ge 10^2$	1.94 x 10 ⁷
$S_1 \rightarrow T_{2x}$	0.31	11	49	0.1	$9 \ge 10^3$	7.72×10^7
$S_1 \rightarrow T_{2x}$	0.31	11	49	1	9 x 10 ⁴	3.04 x 10 ⁸
$S_1 \rightarrow T_{2z}$	0.19	12	49	0.001	6	2.69 x 10 ³
$S_1 \rightarrow T_{2z}$	0.19	12	49	0.01	41	3.36 x 10 ⁶
$S_1 \rightarrow T_{2z}$	0.19	12	49	0.1	$4 \ge 10^2$	$1.08 \ge 10^7$
$S_1 \rightarrow T_{2z}$	0.19	12	49	1	$4 \ge 10^3$	4.69 x 10 ⁷
$S_1 \rightarrow T_{2z}$	0.21	12	49	0.001	5	9.88 x 10 ³
$S_1 \rightarrow T_{2z}$	0.21	12	49	0.01	75	2.46 x 10 ⁵
$S_1 \rightarrow T_{2z}$	0.21	12	49	0.1	6×10^2	3.72×10^6
$S_1 \rightarrow T_{2z}$	0.21	12	49	1	$6 \ge 10^3$	$9.39 \ge 10^7$
$S_1 \rightarrow T_{2z}$	0.22	12	49	0.001	13	4.34×10^{1}
$S_1 \rightarrow T_{2z}$	0.22	12	49	0.01	91	$5.47 \times 10^{6}_{-}$
$S_1 \rightarrow T_{2z}$	0.22	12	49	0.1	9×10^2	$1.42 \ge 10^7$
$S_1 \rightarrow T_{2z}$	0.22	12	49	1	$9 \ge 10^3$	5.24 x 10 ⁸
$S_1 \rightarrow T_{2z}$	0.31	12	49	0.001	80	$2.00 \ge 10^5$
$S_1 \rightarrow T_{2z}$	0.31	12	49	0.01	7×10^2	4.49 x 10 ⁷
$S_1 \rightarrow T_{2z}$	0.31	12	49	0.1	7×10^3	$1.50 \ge 10^8$
$S_1 \rightarrow T_{2z}$	0.31	12	49	1	7×10^4	6.96 x 10 ⁷

Table S7 Calculated rate constants k_{ISC} for the $S_1 \rightarrow T_{i(x/z)}$ (*i* = 1, 2) channel varying the adiabatic energy difference ΔE^{ad} . Remaining columns: number of derivatives with respect of out-of-plane modes ($\#_{derivs}$), width of the search interval η , number of accepting modes within the search interval ($\#_{acc}$) and number of final state vibrational levels within the search interval ($\#_v$).