Supporting Information

Sensitized photochemistry of di(4-tetrazolouracil) dinucleoside monophosphate as a route to dicytosine cyclobutane photoproduct precursors

Frédéric Peyrane and Pascale Clivio*

Table of contents

NMR spectra and HPLC, HPLC/MS chromatograms:

Figure S2: ¹ H NMR spectrum of 2 (300 MHz, D_2O).	S2
Figure S3: 13 C NMR spectrum of 2 (62.5 MHz, D ₂ O).	S3
Figure S4: COSY spectrum of 2 (300 MHz, D_2O).	S4
Figure S5: HMQC spectrum of 2 (300 MHz, D ₂ O).	S5
Figure S6: HMBC spectrum of 2 (300 MHz, D_2O).	S6
Figure S7: ¹ H NMR spectrum of the photosensitized irradiation of 2 (300 MHz, D ₂ O).	
	S7
Figure S8: HPLC chromatogram of the photosensitized irradiation of 2.	S8
Figure S9: ¹ H NMR spectrum of $14a$ (600 MHz, D ₂ O).	S9
Figure S10: 13 C NMR spectrum of 14a (62.5 MHz, D ₂ O).	S10
Figure S11: COSY spectrum of 14a (400 MHz, D ₂ O).	S11
Figure S12: HMQC spectrum of 14a (400 MHz, D ₂ O).	S12
Figure S13: HMBC spectrum of 14a (400 MHz, D ₂ O).	S13
Figure S14: NOESY spectrum of 14a (400 MHz, D ₂ O).	S14
Figure S15: ¹ H NMR spectrum of 14b (600 MHz, D_2O).	S15
Figure S16: 13 C NMR spectrum of 14b (75 MHz, D ₂ O).	S16
Figure S17: COSY spectrum of 14b (400 MHz, D ₂ O).	S17
Figure S18: HMQC spectrum of 14b (300 MHz, D ₂ O).	S18
Figure S19: HMBC spectrum of 14b (400 MHz, D ₂ O).	S19
Figure S20: NOESY spectrum of $14b$ (400 MHz, D_2O).	S20
Figure S21: ¹ H NMR spectrum of 14c (300 MHz, D_2O).	S21
Figure S22: HPLC chromatogram and HPLC/MS total ion current chromatogram of 14	la.
	S22
Figure S23: HPLC chromatogram and HPLC/MS total ion current chromatogram of the	e
$K_2CO_3/MeOH$ treatment of 14a	S23

Figure S2: ¹H NMR spectrum of **2** (300 MHz, D_2O).

Figure S3: ¹³C NMR spectrum of **2** (62.5 MHz, D₂O).

Figure S4: COSY spectrum of 2 (300 MHz, D₂O). *: Contaminated with Et₃N

Figure S5: HMQC spectrum of 2 (300 MHz, D₂O). *: Contaminated with Et₃N

Figure S6: HMBC spectrum of 2 (300 MHz, D₂O). *: Contaminated with Et₃N

Figure S7: ¹H NMR spectrum of the photosensitized irradiation of **2** (300 MHz, D₂O).

Processed	Channel: F	PDA 230.0 nr	n
			_

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	PDA 230.0 nm	11.364	4355764	59.74	197047
2	PDA 230.0 nm	25.828	1949602	26.74	45729
3	PDA 230.0 nm	30.098	985411	13.52	20260

Figure S8: HPLC chromatogram of the photosensitized irradiation of **2**. (SYMMETRY C18 (5µm, 250x4.6 mm) column eluted with ammonium acetate 0.05 M at a flow rate of 1 mL/min)

Figure S9: ¹H NMR spectrum of **14a** (600 MHz, D₂O).

Figure S10: ¹³C NMR spectrum of **14a** (62.5 MHz, D₂O).

Figure S11: COSY spectrum of 14a (400 MHz, D₂O). *: Contaminated with Et₃N

Figure S12: HMQC spectrum of 14a (400 MHz, D₂O). *: Contaminated with Et₃N

Figure S13: HMBC spectrum of 14a (400 MHz, D₂O). *: Contaminated with Et₃N

Figure S14: NOESY spectrum of 14a (400 MHz, D₂O, mixing time 600 ms). *: Contaminated with Et₃N

Figure S15: ¹H NMR spectrum of **14b** (600 MHz, D₂O).

Figure S16: ¹³C NMR spectrum of **14b** (75 MHz, D₂O).

Figure S17: COSY spectrum of 14b (400 MHz, D₂O). *: Contaminated with Et₃N

Figure S18: HMQC spectrum of 14b (300 MHz, D₂O).

Figure S19: HMBC spectrum of 14b (400 MHz, D₂O). *: Contaminated with Et₃N

Figure S20: NOESY spectrum of 14b (400 MHz, D₂O, mixing time 600 ms). *: Contaminated with Et₃N

Figure S21: ¹H NMR spectrum of 14c (300 MHz, D₂O). *: Contaminated with Et₃N

LC-MS analysis of the stability of 14a towards nucleophiles

Compound **14a** (1 mg) is solubilized in a 0.05M K₂CO₃/MeOH (1 mL) then evaporated and injected on to a SYMMETRY C18 (5 μ m, 250x4.6 mm) column eluted with ammonium acetate 0.05 M at a flow rate of 1 mL/min using a photodiode array detector and coupled to a an electrospray mass spectrometer (negative ion mode).

Figure S22: HPLC chromatogram (A) and HPLC/MS total ion current chromatogram (B) of 14a.

Figure S23: HPLC chromatogram (A) and HPLC/MS total ion current chromatogram (B) of the K_2CO_3 /MeOH treatment of **14a**.