Supporting Information for

Solvent-Directed Excited State Intramolecular Proton Transfer (ESIPT) Pathways from Phenol to Carbon in 2,5-dihydroxyphenyl

Arenes

Yu-Hsuan Wang and Peter Wan*

Department of Chemistry, Box 3065, University of Victoria,

British Columbia, Canada, V8W 3V6

Fax:+1 (250) 721-7147; Tel: +1(250) 721-8976; E-mail: pwan@uvic.ca

Table of contents:

1.	NMR spectra (¹ H, ¹³ C and 2D analyses) of compounds	S3
2.	Irradiations of 9 – 11 in UV-Vis cuvettes	S53
3.	Fluorescence spectra of 9 – 11 and 15 in various solvents	S58
4.	Photophysical and photochemical parameters for 9–11 in various solvents	S65
5.	Florescence decay profiles of $9 - 11$ in CH_3CN	S67
6.	Laser flash photolysis of $9 - 11$, 13 and 15 in various solvents	S69
7.	Computational data of 10	S73

1. <u>NMR spectra (¹H, ¹³C and 2D analyses) of compounds</u>

¹H NMR (500 MHz, CDCN₃) spectrum of $\mathbf{9}$

¹³C NMR (125 MHz, CDCN₃) spectrum of **9**

S4

¹H NMR (500 MHz, CDCN₃) spectrum of **10**

¹³C NMR (500 MHz, CDCN₃) spectrum of **10**

S6

gCOSY spectrum of 10 in CDCN₃

gHMBC spectrum of 10 in CDCN₃

gHSQC spectrum of 10 in CDCN₃

¹H NMR (500 MHz, CDCl₃) spectrum of **11**

¹³C NMR (125 MHz, CDCl₃) spectrum of **11**

gCOSY spectrum of **11** in CDCl₃

S12

gHMBC spectrum of **11** in CDCl₃

S13

gHSQC spectrum of **11** in CDCl₃

¹H NMR (500 MHz, CDCl₃) spectrum of **12**

¹³C NMR (125 MHz, CDCl₃) spectrum of **12**

¹H NMR (300 MHz, CDCl₃) spectrum of **13**

S17

¹³C NMR (75 MHz, CDCl₃) spectrum of **13**

¹H NMR (500 MHz, CDCl₃) spectrum of **14**

¹³C NMR (125 MHz, CDCl₃) spectrum of 14

¹H NMR (300 MHz, CDCl₃) spectrum of **15**

¹³C NMR (75 MHz, CDCl₃) spectrum of **15**

 1 H NMR (500 MHz, CDCN₃) spectrum of **16**

¹³C NMR (125 MHz, CDCN₃) spectrum of **16**

gHMBC spectrum of **16** in CDCN₃

gNOESY spectrum of 16 in CDCN₃

gHSQC spectrum of 16 in CDCN₃

¹H NMR (500 MHz, CDCl₃) spectrum of **17**

¹³C NMR (125 MHz, CDCl₃) spectrum of **17**

gHSQC spectrum of 17 in CDCl₃

¹H NMR (500 MHz, CDCl₃) spectrum of **19**

¹³C NMR (125 MHz, CDCl₃) spectrum of **19**

gNOESY spectrum of 19 in CDCl₃

DEPT135 (125 MHz, CDCl₃) spectrum of 19

gHSQC spectrum of **19** in CDCl₃

¹H NMR (500 MHz, CDCl₃) spectrum of **23**

¹H NMR (500 MHz, CDCl₃) spectrum of **24**

¹³C NMR (125 MHz, CDCl₃) spectrum of 24

gHMBC spectrum of 24 in CDCl₃

gHSQC spectrum of 24 in CDCl₃

S46

DEPT135 NMR (125 MHz, CDCN₃) spectrum of 24

¹H NMR (500 MHz, CDCl₃) spectrum of **28**

¹³C NMR (125 MHz, CDCl₃) spectrum of **28**

S52

Electronic Supplementary Material (ESI) for Photochemical & Photobiological Science This journal is @ The Royal Society of Chemistry and Owner Societies 2013

2. Irradiations of 9 – 11 in UV-Vis cuvettes

Absorption spectra of **9** in (a) CH₃CN and (b) $1:1 = H_2O$:CH₃CN after irradiation at 300 nm (photolysis in the UV-vis cuvette, 16 lamps, Rayonet reactor)

(a) in CH₃CN

Absorption spectra of **10** in (a) CH_3CN and (b) $1:1 = H_2O : CH_3CN$ after irradiation at 300 nm (photolysis in the UV-vis cuvette, 16 lamps, Rayonet reactor)

(a) in CH₃CN

(b) in $1:1 = H_2O : CH_3CN$

Absorption spectra of **11** in (a) CH_3CN and (b) $1:1 = H_2O:CH_3CN$ (c) cyclohexane (d) diethyl ether (e) THF (f) methanol after irradiation at 350 nm (photolysis in the UV-vis cuvette, 16 lamps, Rayonet reactor)

(a) in CH₃CN

(b) in $1:1 = H_2O : CH_3CN$

(c) in cyclohexane

(d) in diethyl ether

(e) in THF

3. Fluorescence spectra of 9-11 and 15 in various solvents

Excitation and emission spectra of 9 in (a) cyclohexane (b) diethyl ether (c) THF (d) CH₃CN (e) CH₃OH & isopropyl alcohol (IPA)

(a) in cyclohexane

(b) in diethyl ether

Excitation and emission spectra of 10 in (a) cyclohexane (b) diethyl ether (c) THF (d) CH₃CN (e) CH₃OH (f) IPA

(a) in cyclohexane

(b) in diethyl ether

Excitation and emission spectra of 11 in (a) cyclohexane (b) diethyl ether (c) THF (d) CH₃CN (e) IPA (f) CH₃OH

(a) in cyclohexane

(b) in diethyl ether

(e) in IPA

(f) in CH₃OH

Excitation and emission spectra of 15 in neat CH₃CN

4. <u>Photophysical and Photochemical Parameters for 9 – 11 in various solvents</u>

Solvent	$\lambda_{ m abs}/ m nm^a$	$\lambda_{ m em}/ m nm^b$	$\tau_{\rm f} \left({\rm ns} \right)^c$	$\tau_{\rm f} \left({\rm ns} \right)^d$
Cyclohexane	327 (sh), 356	359, 380, 399,	0.88 (33%),	0.05 (10%)
		424, 450 (sh)	3.3 (13%),	2.1 (6%)
			13.8 (54%)	14.8 (84%)
Diethyl	254 (sh), 295	399	0.15 (80%),	0.19 (90%)
ether			0.95 (16%),	1.5 (10%)
			4.7 (4%)	
THF	318	413	0.24 (26%),	0.23 (21%)
			0.87 (71%),	0.94 (79%)
			4.4 (3%)	
CH ₃ OH	320	427	0.29 (18%),	0.6 (88%)
			0.89 (37%),	3.8 (12%)
			5.4 (45%)	
IPA	321	439	0.06 (17%),	0.9 (91%)
			1.1 (70%),	2.5 (9%)
			5.3 (13%)	

(a) Table 1. Compound 9 in various solvents

^{*a*} Maxima in the absorption spectra. ^{*b*} Maxima in the emission spectra. ^{*c*} Fluorescence lifetimes measured at $\lambda_{em} = 400$ nm by time correlated single photon counting (SPC). Estimated error is ±0.1 ns. ^{*d*} Fluorescence lifetimes measured at $\lambda_{em} = 450$ nm except for cyclohexane at $\lambda_{em} = 360$ nm.

Solvent	$\lambda_{ m abs}/ m nm^a$	$\lambda_{ m em}/{ m nm}^b$	$\tau_{\rm f} \left({\rm ns} \right)^c$
Cyclohexane	248 (sh), 298	357, 401, 426, 453 (sh)	d
Diethyl ether	311	392	2.5 (100%)
THF	311	405	1.6 (85%), 3.5 (15%)
CH ₃ OH	308	432	_ d
IPA	313	426	1.2 (100%)

^{*a*} Maxima in the absorption spectra. ^{*b*} Maxima in the emission spectra. ^{*c*} Fluorescence lifetimes measured at $\lambda_{em} = 400$ nm by time correlated single photon counting (SPC). Estimated error is ±0.1 ns. ^{*d*} Fluorescence is too weak for decay lifetimes to be detected.

Solvent	$\lambda_{ m abs}/ m nm^a$	$\lambda_{ m em}/{ m nm}^b$	${\Phi_{\mathrm{f}}}^c$	$\tau_{\rm f}({\rm ns})^d$	$\tau_{\rm f} \left({\rm ns} \right)^e$
cyclohexane	335 (sh), 352,	409, 429, 454	0.245 ± 0.02	0.17 (4%),	2.2 (100%)
	370, 390	(sh)		2.2 (96%)	
Diethyl ether	335 (sh), 351,	409, 425, 490	0.037 ± 0.002	0.30 (48%),	0.46 (90%)
-	368, 389	(sh)		5.0 (52%)	4.0 (10%)
THF	333 (sh), 351,	409, 431,500	0.009 ± 0.003	0.56 (19%),	0.95 (95%)
	367, 389	(sh)		1.9 (19%),	8.8 (5%)
				13 (62%)	

(c) Table 3. Compound 11 in various solvents

^{*a*} Maxima in the absorption spectra. ^{*b*} Maxima in the emission spectra. ^{*c*} Fluorescence quantum yield measured by using quinine bisulfate ($\Phi = 0.55$) in 0.1 N H₂SO₄.^{23 d} Fluorescence lifetimes measured at $\lambda_{em} = 400$ nm by time correlated single photon counting (SPC). Estimated error is ± 0.1 ns. ^{*e*} Fluorescence lifetimes measured at $\lambda_{em} = 500$ nm.

5. Fluorescence decay profiles of 9 (a), 10 (b), and 11 (c) and 15 (d) in CH_3CN

(a) Compound 9 at $\lambda_{em} = 400 \text{ nm}$

(b) Compound 10 at $\lambda_{em} = 400 \text{ nm}$

5						
5		Fit Results				
	$Fit: \ A+B1exp(-t/\tau_1)$					
	Instrument Response	IRF_50ns_2000count				
	Range (ch)	:0 to 1023				
	Peak Count	:1099 in channel 100				
	Total Count	:70763				
	Background	:0.000				
	Decay Scan	:LW100A_50ns_400nm_1				
	File location	:File has not been saved.				
	Range (ch)	:0 to 1023				
	Peak Count	:1956 in channel 100				
	Total Count	:70763				
	Time Calibration	:0.049 ns/ch				
	Total Experiment Time	:147.06 s				
	Fit Range (ch)	:1 to 700				
	Parameter	Value	Std. Dev.			
	τ1	7.219E-010 s	6.9355E-012 s			
	τ2	3.292E-009 s	1.4980E-010 s			

1.798E-011 s

0.122

0.002

0.874

1.082

Shift

Bl

B2

A

χª

Rel %

91.87

8.13

2.553E-012 s

0.0009

0.0002

(d) Compound 15 at $\lambda_{em} = 400 \text{ nm}$

:0.000 Background LW102A_50ns_400nm Decay Scan File location File has not been saved. :0 to 1023 Range (ch) :1550 in channel 98 Peak Count Total Count :83286 Time Calibration :0.049 ns/ch Total Experiment Time :1338.52 s Fit Range (ch) :1 to 1000 Value Std. Dev. Rel % Parameter $\boldsymbol{\tau_1}$ 1.343E-009 s 8.5333E-012 s τ_2 8.481E-009 s 4.2216E-010 s Shift 1.052E-010 2.513E-012 Bl 0.078 0.0005 93.21 B2 0.001 0.0001 6.79 А 0.710

Fit Results

IRF_50ns_2000count

:1449 in channel 98

:0 to 1023

:83286

1.133

χª

Fit : A+B1exp(-t/ τ_1)+B2exp(-t/ τ_2)

6. Laser Flash Photolysis of 9-11, 13 and 15

(a) Transient absorption spectra observed for 9 in CH₃CN solution

(ii) O₂ purged

(d) Transient absorption spectra observed for 10 in 50% H₂O/CH₃CN

(i) N₂ purged

(i) N₂ purged

(ii) O₂ purged

(ii) O₂ purged

(f) Transient absorption spectra observed for 11 in CH₃CN

(i) N₂ purged

(ii) O₂ purged

(i) 50% H₂O/CH₃CN

(ii) TFE

(g) Transient absorption spectra observed for 11 in O_2 purged

Decay lifetime observed at 420 nm in TFE: 15 µs (left) and 57 ns (right)

(h) Transient absorption spectra observed for 15 in CH₃CN solution

(i) N₂ purged

(ii) O₂ purged

0.10 0.08 0.06 0.04 0.02 0.04 0.06 0.8 1.0 Wavelength (nm)

Decay lifetime observed at 420 nm: 50 ns

(i) Decay transient of 11 vs 15 in CH₃CN

Electronic Supplementary Material (ESI) for Photochemical & Photobiological Science This journal is O The Royal Society of Chemistry and Owner Societies 2013

7. Computational data of 10

Structure optimization at B3LYP/6-311 level of theory for S10-1

Table 1. Atomic Coordinates for S10-1

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	 6	0	-4.770988	-1.172071	-0.433577
2	6	0	-4.037972	-0.011794	-0.253552
3	6	0	-2.625110	-0.040037	-0.152415
4	6	0	-1.974754	-1.306044	-0.243826
5	6	0	-2.745439	-2.480632	-0.428070
6	6	0	-4.122335	-2.419816	-0.521412
7	6	0	-1.812731	1.155386	0.046545
8	6	0	-0.388170	1.040422	0.132670
9	6	0	0.239578	-0.263905	0.000362
10	6	0	-0.544813	-1.374697	-0.164929
11	6	0	-2.387049	2.444414	0.173227
12	6	0	-1.608977	3.567854	0.386976
13	6	0	-0.210938	3.448461	0.490680
14	6	0	0.383665	2.206940	0.366085
15	6	0	1.727822	-0.413113	0.040922
16	6	0	2.351941	-1.052320	1.123878
17	6	0	3.740968	-1.207558	1.155463
18	6	0	4.524456	-0.734681	0.109884
19	6	0	3.915433	-0.100444	-0.976855
20	6	0	2.533042	0.061608	-1.010747
21	8	0	1.640755	-1.559173	2.214068
22	8	0	4.758913	0.347010	-2.000749
23	1	0	-5.849016	-1.119664	-0.507232
24	1	0	-4.565486	0.928383	-0.190464
25	1	0	-2.233581	-3.432353	-0.497075

Electronic Supplementary Material (ESI) for Photochemical & Photobiological Science This journal is O The Royal Society of Chemistry and Owner Societies 2013

26	1	0	-4 701117	-3 322626	-0 661978
20	1	0	4.701117	0.045050	0.001070
27	T	0	-0.0/52//	-2.345058	-0.2/3219
28	1	0	-3.458563	2.561894	0.108936
29	1	0	-2.078208	4.538019	0.481558
30	1	0	0.396635	4.324764	0.672283
31	1	0	1.455608	2.111553	0.454228
32	1	0	4.182980	-1.701898	2.007972
33	1	0	5.598410	-0.847693	0.114631
34	1	0	2.059277	0.548481	-1.854779
35	1	0	0.685775	-1.393868	2.115510
36	1	0	4.259430	0.759534	-2.724784

Structure optimization at B3LYP/6-311 level of theory for S10-2

 Table 2. Atomic Coordinates for S10-2

Center	Atomic	mic Atomic Coordinates			(Angstroms)	
Number	Number	Туре	Х	Y	Ζ	
1	6	0	4.695051	-1.501712	0.047603	
2	6	0	4.034272	-0.295550	-0.107775	
3	6	0	2.619906	-0.219379	-0.070497	
4	6	0	1.890790	-1.427955	0.135235	
5	6	0	2.589047	-2.650990	0.292740	
6	6	0	3.969009	-2.692494	0.249510	
7	6	0	1.881344	1.027514	-0.234803	
8	6	0	0.450031	1.017067	-0.182004	
9	6	0	-0.255788	-0.233447	0.051652	
10	6	0	0.459382	-1.391290	0.192937	
11	6	0	2.531619	2.265786	-0.461372	
12	6	0	1.819451	3.438691	-0.635325	
13	6	0	0.412965	3.422690	-0.596974	

Electronic Supplementary Material (ESI) for Photochemical & Photobiological Science This journal is O The Royal Society of Chemistry and Owner Societies 2013

14	6	0	-0.254877	2.233339	-0.375335
15	6	0	-1.749545	-0.276019	0.125914
16	6	0	-2.444754	0.290722	1.206708
17	6	0	-3.837698	0.209296	1.279562
18	6	0	-4.558095	-0.437301	0.281768
19	6	0	-3.879672	-1.009150	-0.797338
20	6	0	-2.491004	-0.931278	-0.874059
21	8	0	-1.804992	0.953188	2.257317
22	8	0	-4.659920	-1.645394	-1.769964
23	1	0	5.776000	-1.529653	0.014597
24	1	0	4.619463	0.599189	-0.259937
25	1	0	2.018750	-3.557927	0.450116
26	1	0	4.491897	-3.631486	0.371120
27	1	0	-0.067423	-2.320509	0.370983
28	1	0	3.609921	2.303559	-0.504271
29	1	0	2.345769	4.368170	-0.806512
30	1	0	-0.144667	4.337778	-0.743282
31	1	0	-1.334707	2.217510	-0.359081
32	1	0	-4.333367	0.653276	2.130358
33	1	0	-5.634831	-0.509723	0.321072
34	1	0	-1.962523	-1.365928	-1.713987
35	1	0	-0.838119	0.950014	2.149429
36	1	0	-4.115459	-2.007857	-2.488305