Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2014

Supporting Information

Photobiological characteristics of chlorophyll a derivatives as microbial PDT agents

Marciana P. Uliana ^{a,b}, Layla Pires ^a, Sebastião Pratavieira ^a, Timothy J. Brocksom ^b, Kleber T.

de Oliveira^b, Vanderlei S. Bagnato^a, Cristina Kurachi^{a*}

a Instituto de Física de São Carlos – Universidade de São Paulo, Av: Trabalhador São Carlense, 400, São Carlos, São Paulo 13566-590, Brazil.

b Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235 - SP-310, 13565-905, São Carlos – São Paulo, Brazil.

*Corresponding author e-mail: cristina@ifsc.usp.br (Cristina Kurachi)

Figure S1. ¹H-NMR (400 MHz) in CDCl₃ of methyl pheophorbide-*a*.

Figure S2. ¹³C-NMR (100 MHz) in CDCl₃ of methyl pheophorbide-*a*.

Figure S3. ¹H-NMR (400 MHz) in CDCl₃ of hydrogenated methyl pheophorbide-*a*.

Figure S4. ¹³C-NMR (100 MHz) in CDCl₃ of hydrogenated methyl pheophorbide-a.

Figure S5. ¹H-NMR (400 MHz) in (CD₃)₂CO of chl-e6.

Figure S6. ¹H-NMR (400 MHz) in (CD₃)₂CO of chl-e6H.

Mass spectrum of chlorin-e6 (3)

Figure S7: Mass spectrum of chlorin-e6 (3).

Figure S8: Mass spectrum of chl-e6H.

UV-Vis spectrum of methyl pheophorbide-a (1)

Figure S9: UV-Vis spectrum of methyl pheophorbide-a in ethyl acetate

UV-Vis spectrum of hydrogenated methyl pheophorbide-a

Figure S10: UV-Vis spectrum of hydrogenated methyl pheophorbide-a in ethyl acetate

UV-Vis spectrum of chlorin-e6

Figure S11: UV-Vis spectrum chl-e6 in ethyl acetate

Singlet oxygen quantum yields

Figure S13: Absorption spectra of 50 µM DPBF upon irradiation time in air saturated ethanol containing **MB** with irradiation at 660 nm.

Figure S14: Absorption spectra of 50 µM DPBF upon irradiation time in air saturated ethanol containing **chl-e6** with irradiation at 660 nm.

Figure S15: Absorption spectra of 50 µM DPBF upon irradiation time in air saturated ethanol containing **chl-e6H** with irradiation at 660 nm.

Photobleaching studies

Figure S16: Photodegradation of chl-e6 with irradiation periods of 1 min. *Insert:* Absorption at 400 nm and 665 nm in function of time

Figure S17: Photodegradation of chl-e6H with irradiation periods of 1 min. *Insert:* Absorption at 395 nm and 652 nm in function of time

Figure S18: Photodegradation of chl-e6 with irradiation periods of 3 min. *Insert:* Absorption at 395 nm in function of time.

Figure S19: Photodegradation of chl-e6H with irradiation periods of 3 min. *Insert:* Absorption at 400 nm in function of time.