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Appendix 1
1. Equilibrium

In Scheme A1 the network of chemical reactions of a flavylium compound taking place in the

presence of the host (2-Hydroxypropyl)-#-cyclodextrin is shown.
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With the following acid-base and equilibrium constants
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as well as the association constants

ACD [A][CD]’ AH+CD [AH*][CD]’ BCD [B[CD]’ CeCD [Ccl[CD]

_ [cep)
CtCD [Ct] [CD]

From the above relations
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For the subsequent calculations the following expression is important
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The mass balance gives:
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By using the equilibrium constants from Scheme 1
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simplifying
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leading to the mole fraction distribution of all the species at the equilibrium:
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2. Kinetics

In the case of flavylium networks lacking a cis-trans isomerization barrier as dracoflavylium, the
equilibrium between AH* and A as well B and Cc is reached during the kinetic process, and the

following kinetic scheme can be used.
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This is equivalent to the following equilibrium

ki k, (A14)

Where the equilibrium between AH" and A is assigned to X, the equilibrium between B and Cc to Y
and Ct to Z.



Assuming the steady state for Y, the observed rate constant is given by eq.(A16)
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where Dy jiveery = is the formation efficiency of Y during the direct process and £, the rate of
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process and £ the rate of X formation in this last process.

Z formation during the same process, My (everse) = the formation efficiency of Y in the reverse
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In the scheme shown in eq.(A14) k; is equal to k, since k, should be multiplied by the
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equilibrium between B and Cc. Regarding the reverse processes, k., is identified as k., and k., to
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Substituting these constants in eq.(A15)
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In the presence of the HCD Scheme A2 should be considered. The species AH*, A inside and outside
the host are in fast equilibrium, equivalent to X in eq.(14); B, Cc inside and outside of the

cyclodextrin are equivalent to Z; Ct inside and outside the cyclodextrin assigned to Z.
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At this point the situation is similar to eq.(A14), and it is easy to calculate the mole fraction

distribution of each species in these three fast equilibria.
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The strategy is the same: i) we have to consider the mole fraction of flavylium cation in water and
multiply by 4, ii) the mole fraction of B and multiply by k,[H"], iii) the mole fraction of Cc and
multiply by &; and also iv) the mole fraction of Ct multiplied by ;.
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The same mutatis mutandis for the species inside the host.
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3. Flash Photolysis

3.1 In pure water

Identically to the case of the quantum yields, the pH dependence of the flash photolysis can be

controlled by hydration or tautomerization
4.1.1 Control by hydration.

The data show the change of regime. At higher pH jumps the rate determining step is the hydration
reaction and eq.(A31) is followed.
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3.1.2. Control by tautomerization

At lower pH values the hydration becomes faster than tautomerization (it is directly proportional to

[H']) and eq.(A32) should be used
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3.2. In the presence of HCD

3.2.1 Control by hydration in water in the presence of HCB
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3.2.2. Control by tautomerization in water in the presence of HCB
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3.2.3 Control by hydration inside the HCD
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3.2.4. Control by tautomerization inside the HCD
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