Influence of Polymer Conformations on the Aggregation Behaviour of

Alternating Dialkylsilylene-[4,4'-divinyl(cyanostilbene)] Copolymers

Chih-Hsien Chen, *^a Shern-Long Lee, ^a Tsong-Shin Lim, ^b Chun-hsien Chen, ^a Tien-Yau

Luh*a

^a Department of Chemistry, National Taiwan University, Taipei, Taiwan 106

^b Department of Physics, Tunghai University, Taichung, Taiwan 407

*Corresponding authors: E-mail: tyluh@ntu.edu.tw, chhschen@ntu.edu.tw

Supplementary Information

Table of Contents

1. X-ray diffraction measurement

Fig. S1 XRD patterns of 3a (black), 3b (red), and blank test (blue).

 Table 1 Crystal size estimation of 3a and 3b.

- Fig. S2 Normal (black) and first derivative (red) of DSC curves of (a) 3a and (b) 3b.
- 3. Crystal data and structure refinement for **5**.

Table S2Crystal data and structure refinement for 5.

Table S3 Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for **5**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

 Table S4. Bond lengths [Å] and angles [°] for 5.

Table S5. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for **5**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

4. ¹H spectra of new compounds

Fig. S3 1 H NMR spectrum of **8**.

Fig. S4 ¹³C NMR spectrum of 8.

- **Fig. S5** ¹H NMR spectrum of **9**.
- Fig. S6 ¹³C NMR spectrum of 9.

- Fig. S7 ¹H NMR spectrum of 5.
- **Fig. S8**¹³C NMR spectrum of **5**.
- **Fig. S9** ¹H NMR spectrum of **12**.
- Fig. S10 ¹³C NMR spectrum of 12.
- Fig. S11 ¹H NMR spectrum of 3a.
- **Fig. S12** ¹H NMR spectrum of **3b**.
- Fig. S13 ¹H NMR spectrum of 4.

Fig. S1 XRD patterns of 3a (black), 3b (red), and blank test (blue).

Crystal size estimation of 3a and 3b.

The crystal sizes (*t*) of **3a** and **3b** were estimated by Scherrer's formula, $t = 0.9\lambda/B\cos\theta$, where λ , B and θ denote the wavelength of X-ray (1.54056 Å), the half width of peaks in radian, and the angle of incident beam, respectively. The results are summarized in Table S1.

Table S1 Crystal size estimation of 3a and 3b.

	B (radian)	cosθ	<i>t</i> (nm)
3 a	0.0149	0.94	9.9
3 b	0.0128	0.93	11.5

Fig. S2 Normal (black) and first derivative (red) of DSC curves of (a) 3a and (b) 3b.

Table S2	Crystal data and	structure refineme	nt for 5.
----------	------------------	--------------------	-----------

Identification code	ic14121	
pirical formula C25 H31 N Si2		
Formula weight	Formula weight 401.69	
Temperature	295(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P2(1)/c	
Unit cell dimensions	a = 18.3400(6) Å	$\alpha = 90^{\circ}$.
	b = 6.7435(2) Å	$\beta = 102.043(4)^{\circ}.$
	c = 20.8688(7) Å	$\gamma = 90^{\circ}$.
Volume	2524.16(14) Å ³	
Z	4	
Density (calculated)	1.057 Mg/m ³	
Absorption coefficient	1.328 mm ⁻¹	
F(000)	864	
Crystal size	0.25 x 0.20 x 0.15 mm ³	
Theta range for data collection	4.33 to 68.00°.	
Index ranges	-19<=h<=22, -6<=k<=8, -23<=l<=25	
Reflections collected	9307	
Independent reflections	4565 [R(int) = 0.0266]	
Completeness to theta = 68.00°	99.5 %	
Absorption correction	Semi-empirical from equivaler	nts
Max. and min. transmission	1.00000 and 0.45060	
Refinement method	Full-matrix least-squares on F ²	1
Data / restraints / parameters	4565 / 0 / 253	
Goodness-of-fit on F ²	2.275	
Final R indices [I>2sigma(I)]	R1 = 0.1148, wR2 = 0.3246	
R indices (all data)	R1 = 0.1375, wR2 = 0.3404	
Largest diff. peak and hole	1.253 and -0.625 e.Å ⁻³	

Si(1) $1428(1)$ $3328(3)$ $985(1)$ $78(1)$ Si(2) $8544(1)$ $2472(3)$ $-3488(1)$ $78(1)$ N(1) $5222(4)$ $9566(7)$ $-1109(3)$ $119(2)$ C(1) $5147(3)$ $7946(8)$ $-1201(3)$ $85(2)$ C(2) $5079(5)$ $5870(10)$ $-1324(5)$ $179(6)$ C(3) $4885(5)$ $4571(11)$ $-1261(4)$ $155(4)$ C(4) $4271(3)$ $5046(14)$ $-736(3)$ $104(2)$ C(5) $4093(3)$ $6659(12)$ $-408(3)$ $103(2)$ C(6) $3575(3)$ $6528(9)$ $-7(3)$ $85(2)$ C(7) $3213(2)$ $4791(8)$ $67(2)$ $67(1)$ C(8) $3414(3)$ $3120(10)$ $-258(3)$ $91(2)$ C(9) $3930(3)$ $3250(13)$ $-639(3)$ $105(2)$ C(10) $2639(2)$ $4741(8)$ $466(2)$ $69(1)$ C(11) $2208(3)$ $3236(8)$ $553(2)$ $78(1)$ C(12) $1258(4)$ $5935(11)$ $1208(3)$ $108(2)$ C(13) $590(3)$ $2389(13)$ $424(3)$ $116(3)$ C(14) $1634(4)$ $1780(13)$ $1733(3)$ $121(2)$ C(15) $5702(3)$ $5114(11)$ $-1852(3)$ $89(2)$ C(16) $5947(3)$ $6639(10)$ $-2192(3)$ $87(2)$ C(17) $6448(3)$ $6289(8)$ $-2582(3)$ $80(1)$ C(18) $6751(2)$ $4446(8)$ $-2652(2)$ $69(1)$ C(19) $6495(3)$ $2908(9)$ $-2313(3)$ <		Х	У	Z	U(eq)
Si(2) 8544(1) 2472(3) -3488(1) 78(1) N(1) 5222(4) 9566(7) -1109(3) 119(2) C(1) 5147(3) 7946(8) -1201(3) 85(2) C(2) 5079(5) 5870(10) -1324(5) 179(6) C(3) 4885(5) 4571(11) -1261(4) 155(4) C(4) 4271(3) 5046(14) -736(3) 104(2) C(5) 4093(3) 6659(12) -408(3) 103(2) C(6) 3575(3) 6528(9) -7(3) 85(2) C(7) 3213(2) 4791(8) 67(2) 67(1) C(8) 3414(3) 3120(10) -258(3) 91(2) C(9) 3930(3) 3250(13) -639(3) 105(2) C(10) 2639(2) 4741(8) 466(2) 69(1) C(11) 2208(3) 3236(8) 553(2) 78(1) C(12) 1258(4) 5935(11) 1208(3) 116(3) C(13) 590(3) 2389(13)	Si(1)	1428(1)	3328(3)	985(1)	78(1)
N(1) 5222(4) 9566(7) -1109(3) 119(2) C(1) 5147(3) 7946(8) -1201(3) 85(2) C(2) 5079(5) 5870(10) -1324(5) 179(6) C(3) 4885(5) 4571(11) -1261(4) 155(4) C(4) 4271(3) 5046(14) -736(3) 104(2) C(5) 4093(3) 6659(12) -408(3) 103(2) C(6) 3575(3) 6528(9) -7(3) 85(2) C(7) 3213(2) 4791(8) 67(2) 67(1) C(8) 3414(3) 3120(10) -258(3) 91(2) C(9) 3930(3) 3250(13) -639(3) 105(2) C(10) 2639(2) 4741(8) 466(2) 69(1) C(11) 2208(3) 3236(8) 553(2) 78(1) C(12) 1258(4) 5935(11) 1208(3) 108(2) C(14) 1634(4) 1780(13) 173(3) 121(2) C(15) 5702(3) 5114(11) <td>Si(2)</td> <td>8544(1)</td> <td>2472(3)</td> <td>-3488(1)</td> <td>78(1)</td>	Si(2)	8544(1)	2472(3)	-3488(1)	78(1)
C(1)5147(3)7946(8)-1201(3)85(2)C(2)5079(5)5870(10)-1324(5)179(6)C(3)4885(5)4571(11)-1261(4)155(4)C(4)4271(3)5046(14)-736(3)104(2)C(5)4093(3)6659(12)-408(3)103(2)C(6)3575(3)6528(9)-7(3)85(2)C(7)3213(2)4791(8)67(2)67(1)C(8)3414(3)3120(10)-258(3)91(2)C(9)3930(3)3250(13)-639(3)105(2)C(10)2639(2)4741(8)466(2)69(1)C(11)2208(3)3236(8)553(2)78(1)C(12)1258(4)5935(11)1208(3)108(2)C(13)590(3)2389(13)424(3)116(3)C(14)1634(4)1780(13)1733(3)121(2)C(15)5702(3)5114(11)-1852(3)89(2)C(16)5947(3)6639(10)-2192(3)87(2)C(17)6448(3)6289(8)-2582(3)80(1)C(18)6751(2)4446(8)-2652(2)69(1)C(19)6495(3)2908(9)-2313(3)84(1)C(20)5977(3)3244(11)-1934(3)97(2)C(21)7323(2)4214(8)-3043(2)77(1)C(22)7765(3)2703(9)-3053(2)81(1)C(23)8369(4)3877(10)-4259(3)102(2)C(24)9409(3)3354(15)-2945(4) <td>N(1)</td> <td>5222(4)</td> <td>9566(7)</td> <td>-1109(3)</td> <td>119(2)</td>	N(1)	5222(4)	9566(7)	-1109(3)	119(2)
C(2)5079(5)5870(10)-1324(5)179(6)C(3)4885(5)4571(11)-1261(4)155(4)C(4)4271(3)5046(14)-736(3)104(2)C(5)4093(3)6659(12)-408(3)103(2)C(6)3575(3)6528(9)-7(3)85(2)C(7)3213(2)4791(8)67(2)67(1)C(8)3414(3)3120(10)-258(3)91(2)C(9)3930(3)3250(13)-639(3)105(2)C(10)2639(2)4741(8)466(2)69(1)C(11)2208(3)3236(8)553(2)78(1)C(12)1258(4)5935(11)1208(3)108(2)C(13)590(3)2389(13)424(3)116(3)C(14)1634(4)1780(13)1733(3)121(2)C(15)5702(3)5114(11)-1852(3)89(2)C(16)5947(3)6639(10)-2192(3)87(2)C(17)6448(3)6289(8)-2582(3)80(1)C(18)6751(2)4446(8)-2652(2)69(1)C(19)6495(3)2908(9)-2313(3)84(1)C(20)5977(3)3244(11)-1934(3)97(2)C(21)7323(2)4214(8)-3043(2)77(1)C(22)7765(3)2703(9)-3053(2)81(1)C(23)8369(4)3877(10)-4259(3)102(2)C(24)9409(3)3354(15)-2945(4)133(3)	C(1)	5147(3)	7946(8)	-1201(3)	85(2)
C(3)4885(5)4571(11)-1261(4)155(4)C(4)4271(3)5046(14)-736(3)104(2)C(5)4093(3)6659(12)-408(3)103(2)C(6)3575(3)6528(9)-7(3)85(2)C(7)3213(2)4791(8)67(2)67(1)C(8)3414(3)3120(10)-258(3)91(2)C(9)3930(3)3250(13)-639(3)105(2)C(10)2639(2)4741(8)466(2)69(1)C(11)2208(3)3236(8)553(2)78(1)C(12)1258(4)5935(11)1208(3)108(2)C(13)590(3)2389(13)424(3)116(3)C(14)1634(4)1780(13)1733(3)121(2)C(15)5702(3)5114(11)-1852(3)89(2)C(16)5947(3)6639(10)-2192(3)87(2)C(17)6448(3)6289(8)-2582(3)80(1)C(18)6751(2)4446(8)-2652(2)69(1)C(19)6495(3)2908(9)-2313(3)84(1)C(20)5977(3)3244(11)-1934(3)97(2)C(21)7323(2)4214(8)-3043(2)77(1)C(22)7765(3)2703(9)-3053(2)81(1)C(23)8369(4)3877(10)-4259(3)102(2)C(24)9409(3)3354(15)-2945(4)133(3)	C(2)	5079(5)	5870(10)	-1324(5)	179(6)
C(4) $4271(3)$ $5046(14)$ $-736(3)$ $104(2)$ $C(5)$ $4093(3)$ $6659(12)$ $-408(3)$ $103(2)$ $C(6)$ $3575(3)$ $6528(9)$ $-7(3)$ $85(2)$ $C(7)$ $3213(2)$ $4791(8)$ $67(2)$ $67(1)$ $C(8)$ $3414(3)$ $3120(10)$ $-258(3)$ $91(2)$ $C(9)$ $3930(3)$ $3250(13)$ $-639(3)$ $105(2)$ $C(10)$ $2639(2)$ $4741(8)$ $466(2)$ $69(1)$ $C(11)$ $2208(3)$ $3236(8)$ $553(2)$ $78(1)$ $C(12)$ $1258(4)$ $5935(11)$ $1208(3)$ $108(2)$ $C(13)$ $590(3)$ $2389(13)$ $424(3)$ $116(3)$ $C(14)$ $1634(4)$ $1780(13)$ $1733(3)$ $121(2)$ $C(15)$ $5702(3)$ $5114(11)$ $-1852(3)$ $89(2)$ $C(16)$ $5947(3)$ $6639(10)$ $-2192(3)$ $87(2)$ $C(17)$ $6448(3)$ $6289(8)$ $-2582(3)$ $80(1)$ $C(18)$ $6751(2)$ $4446(8)$ $-2652(2)$ $69(1)$ $C(19)$ $6495(3)$ $2908(9)$ $-2313(3)$ $84(1)$ $C(20)$ $5977(3)$ $3244(11)$ $-1934(3)$ $97(2)$ $C(21)$ $7323(2)$ $4214(8)$ $-3043(2)$ $77(1)$ $C(22)$ $7765(3)$ $2703(9)$ $-3053(2)$ $81(1)$ $C(23)$ $8369(4)$ $3877(10)$ $-4259(3)$ $102(2)$ $C(24)$ $9409(3)$ $3354(15)$ $-2945(4)$ $133(3)$	C(3)	4885(5)	4571(11)	-1261(4)	155(4)
C(5) $4093(3)$ $6659(12)$ $-408(3)$ $103(2)$ $C(6)$ $3575(3)$ $6528(9)$ $-7(3)$ $85(2)$ $C(7)$ $3213(2)$ $4791(8)$ $67(2)$ $67(1)$ $C(8)$ $3414(3)$ $3120(10)$ $-258(3)$ $91(2)$ $C(9)$ $3930(3)$ $3250(13)$ $-639(3)$ $105(2)$ $C(10)$ $2639(2)$ $4741(8)$ $466(2)$ $69(1)$ $C(11)$ $2208(3)$ $3236(8)$ $553(2)$ $78(1)$ $C(12)$ $1258(4)$ $5935(11)$ $1208(3)$ $108(2)$ $C(13)$ $590(3)$ $2389(13)$ $424(3)$ $116(3)$ $C(14)$ $1634(4)$ $1780(13)$ $1733(3)$ $121(2)$ $C(15)$ $5702(3)$ $5114(11)$ $-1852(3)$ $89(2)$ $C(16)$ $5947(3)$ $6639(10)$ $-2192(3)$ $87(2)$ $C(17)$ $6448(3)$ $6289(8)$ $-2582(3)$ $80(1)$ $C(18)$ $6751(2)$ $4446(8)$ $-2652(2)$ $69(1)$ $C(19)$ $6495(3)$ $2908(9)$ $-2313(3)$ $84(1)$ $C(20)$ $5977(3)$ $3244(11)$ $-1934(3)$ $97(2)$ $C(21)$ $7323(2)$ $4214(8)$ $-3043(2)$ $77(1)$ $C(22)$ $7765(3)$ $2703(9)$ $-3053(2)$ $81(1)$ $C(23)$ $8369(4)$ $3877(10)$ $-4259(3)$ $102(2)$ $C(24)$ $9409(3)$ $3354(15)$ $-2945(4)$ $133(3)$	C(4)	4271(3)	5046(14)	-736(3)	104(2)
C(6) $3575(3)$ $6528(9)$ $-7(3)$ $85(2)$ $C(7)$ $3213(2)$ $4791(8)$ $67(2)$ $67(1)$ $C(8)$ $3414(3)$ $3120(10)$ $-258(3)$ $91(2)$ $C(9)$ $3930(3)$ $3250(13)$ $-639(3)$ $105(2)$ $C(10)$ $2639(2)$ $4741(8)$ $466(2)$ $69(1)$ $C(11)$ $2208(3)$ $3236(8)$ $553(2)$ $78(1)$ $C(12)$ $1258(4)$ $5935(11)$ $1208(3)$ $108(2)$ $C(13)$ $590(3)$ $2389(13)$ $424(3)$ $116(3)$ $C(14)$ $1634(4)$ $1780(13)$ $1733(3)$ $121(2)$ $C(15)$ $5702(3)$ $5114(11)$ $-1852(3)$ $89(2)$ $C(16)$ $5947(3)$ $6639(10)$ $-2192(3)$ $87(2)$ $C(17)$ $6448(3)$ $6289(8)$ $-2582(3)$ $80(1)$ $C(18)$ $6751(2)$ $4446(8)$ $-2652(2)$ $69(1)$ $C(19)$ $6495(3)$ $2908(9)$ $-2313(3)$ $84(1)$ $C(20)$ $5977(3)$ $3244(11)$ $-1934(3)$ $97(2)$ $C(21)$ $7323(2)$ $4214(8)$ $-3043(2)$ $77(1)$ $C(22)$ $7765(3)$ $2703(9)$ $-3053(2)$ $81(1)$ $C(23)$ $8369(4)$ $3877(10)$ $-4259(3)$ $102(2)$ $C(24)$ $9409(3)$ $3354(15)$ $-2945(4)$ $133(3)$	C(5)	4093(3)	6659(12)	-408(3)	103(2)
C(7) $3213(2)$ $4791(8)$ $67(2)$ $67(1)$ $C(8)$ $3414(3)$ $3120(10)$ $-258(3)$ $91(2)$ $C(9)$ $3930(3)$ $3250(13)$ $-639(3)$ $105(2)$ $C(10)$ $2639(2)$ $4741(8)$ $466(2)$ $69(1)$ $C(11)$ $2208(3)$ $3236(8)$ $553(2)$ $78(1)$ $C(12)$ $1258(4)$ $5935(11)$ $1208(3)$ $108(2)$ $C(13)$ $590(3)$ $2389(13)$ $424(3)$ $116(3)$ $C(14)$ $1634(4)$ $1780(13)$ $1733(3)$ $121(2)$ $C(15)$ $5702(3)$ $5114(11)$ $-1852(3)$ $89(2)$ $C(16)$ $5947(3)$ $6639(10)$ $-2192(3)$ $87(2)$ $C(17)$ $6448(3)$ $6289(8)$ $-2582(3)$ $80(1)$ $C(18)$ $6751(2)$ $4446(8)$ $-2652(2)$ $69(1)$ $C(19)$ $6495(3)$ $2908(9)$ $-2313(3)$ $84(1)$ $C(20)$ $5977(3)$ $3244(11)$ $-1934(3)$ $97(2)$ $C(21)$ $7323(2)$ $4214(8)$ $-3043(2)$ $77(1)$ $C(22)$ $7765(3)$ $2703(9)$ $-3053(2)$ $81(1)$ $C(23)$ $8369(4)$ $3877(10)$ $-4259(3)$ $102(2)$ $C(24)$ $9409(3)$ $3354(15)$ $-2945(4)$ $133(3)$	C(6)	3575(3)	6528(9)	-7(3)	85(2)
C(8) $3414(3)$ $3120(10)$ $-258(3)$ $91(2)$ $C(9)$ $3930(3)$ $3250(13)$ $-639(3)$ $105(2)$ $C(10)$ $2639(2)$ $4741(8)$ $466(2)$ $69(1)$ $C(11)$ $2208(3)$ $3236(8)$ $553(2)$ $78(1)$ $C(12)$ $1258(4)$ $5935(11)$ $1208(3)$ $108(2)$ $C(13)$ $590(3)$ $2389(13)$ $424(3)$ $116(3)$ $C(14)$ $1634(4)$ $1780(13)$ $1733(3)$ $121(2)$ $C(15)$ $5702(3)$ $5114(11)$ $-1852(3)$ $89(2)$ $C(16)$ $5947(3)$ $6639(10)$ $-2192(3)$ $87(2)$ $C(17)$ $6448(3)$ $6289(8)$ $-2582(3)$ $80(1)$ $C(18)$ $6751(2)$ $4446(8)$ $-2652(2)$ $69(1)$ $C(19)$ $6495(3)$ $2908(9)$ $-2313(3)$ $84(1)$ $C(20)$ $5977(3)$ $3244(11)$ $-1934(3)$ $97(2)$ $C(21)$ $7323(2)$ $4214(8)$ $-3043(2)$ $77(1)$ $C(22)$ $7765(3)$ $2703(9)$ $-3053(2)$ $81(1)$ $C(23)$ $8369(4)$ $3877(10)$ $-4259(3)$ $102(2)$ $C(24)$ $9409(3)$ $3354(15)$ $-2945(4)$ $133(3)$	C(7)	3213(2)	4791(8)	67(2)	67(1)
C(9) $3930(3)$ $3250(13)$ $-639(3)$ $105(2)$ $C(10)$ $2639(2)$ $4741(8)$ $466(2)$ $69(1)$ $C(11)$ $2208(3)$ $3236(8)$ $553(2)$ $78(1)$ $C(12)$ $1258(4)$ $5935(11)$ $1208(3)$ $108(2)$ $C(13)$ $590(3)$ $2389(13)$ $424(3)$ $116(3)$ $C(14)$ $1634(4)$ $1780(13)$ $1733(3)$ $121(2)$ $C(15)$ $5702(3)$ $5114(11)$ $-1852(3)$ $89(2)$ $C(16)$ $5947(3)$ $6639(10)$ $-2192(3)$ $87(2)$ $C(17)$ $6448(3)$ $6289(8)$ $-2582(3)$ $80(1)$ $C(18)$ $6751(2)$ $4446(8)$ $-2652(2)$ $69(1)$ $C(19)$ $6495(3)$ $2908(9)$ $-2313(3)$ $84(1)$ $C(20)$ $5977(3)$ $3244(11)$ $-1934(3)$ $97(2)$ $C(21)$ $7323(2)$ $4214(8)$ $-3043(2)$ $77(1)$ $C(22)$ $7765(3)$ $2703(9)$ $-3053(2)$ $81(1)$ $C(23)$ $8369(4)$ $3877(10)$ $-4259(3)$ $102(2)$ $C(24)$ $9409(3)$ $3354(15)$ $-2945(4)$ $133(3)$	C(8)	3414(3)	3120(10)	-258(3)	91(2)
C(10) $2639(2)$ $4741(8)$ $466(2)$ $69(1)$ $C(11)$ $2208(3)$ $3236(8)$ $553(2)$ $78(1)$ $C(12)$ $1258(4)$ $5935(11)$ $1208(3)$ $108(2)$ $C(13)$ $590(3)$ $2389(13)$ $424(3)$ $116(3)$ $C(14)$ $1634(4)$ $1780(13)$ $1733(3)$ $121(2)$ $C(15)$ $5702(3)$ $5114(11)$ $-1852(3)$ $89(2)$ $C(16)$ $5947(3)$ $6639(10)$ $-2192(3)$ $87(2)$ $C(17)$ $6448(3)$ $6289(8)$ $-2582(3)$ $80(1)$ $C(18)$ $6751(2)$ $4446(8)$ $-2652(2)$ $69(1)$ $C(19)$ $6495(3)$ $2908(9)$ $-2313(3)$ $84(1)$ $C(20)$ $5977(3)$ $3244(11)$ $-1934(3)$ $97(2)$ $C(21)$ $7323(2)$ $4214(8)$ $-3043(2)$ $77(1)$ $C(22)$ $7765(3)$ $2703(9)$ $-3053(2)$ $81(1)$ $C(23)$ $8369(4)$ $3877(10)$ $-4259(3)$ $102(2)$ $C(24)$ $9409(3)$ $3354(15)$ $-2945(4)$ $133(3)$	C(9)	3930(3)	3250(13)	-639(3)	105(2)
C(11) $2208(3)$ $3236(8)$ $553(2)$ $78(1)$ $C(12)$ $1258(4)$ $5935(11)$ $1208(3)$ $108(2)$ $C(13)$ $590(3)$ $2389(13)$ $424(3)$ $116(3)$ $C(14)$ $1634(4)$ $1780(13)$ $1733(3)$ $121(2)$ $C(15)$ $5702(3)$ $5114(11)$ $-1852(3)$ $89(2)$ $C(16)$ $5947(3)$ $6639(10)$ $-2192(3)$ $87(2)$ $C(17)$ $6448(3)$ $6289(8)$ $-2582(3)$ $80(1)$ $C(18)$ $6751(2)$ $4446(8)$ $-2652(2)$ $69(1)$ $C(19)$ $6495(3)$ $2908(9)$ $-2313(3)$ $84(1)$ $C(20)$ $5977(3)$ $3244(11)$ $-1934(3)$ $97(2)$ $C(21)$ $7323(2)$ $4214(8)$ $-3043(2)$ $77(1)$ $C(22)$ $7765(3)$ $2703(9)$ $-3053(2)$ $81(1)$ $C(23)$ $8369(4)$ $3877(10)$ $-4259(3)$ $102(2)$ $C(24)$ $9409(3)$ $3354(15)$ $-2945(4)$ $133(3)$	C(10)	2639(2)	4741(8)	466(2)	69(1)
C(12) $1258(4)$ $5935(11)$ $1208(3)$ $108(2)$ $C(13)$ $590(3)$ $2389(13)$ $424(3)$ $116(3)$ $C(14)$ $1634(4)$ $1780(13)$ $1733(3)$ $121(2)$ $C(15)$ $5702(3)$ $5114(11)$ $-1852(3)$ $89(2)$ $C(16)$ $5947(3)$ $6639(10)$ $-2192(3)$ $87(2)$ $C(17)$ $6448(3)$ $6289(8)$ $-2582(3)$ $80(1)$ $C(18)$ $6751(2)$ $4446(8)$ $-2652(2)$ $69(1)$ $C(19)$ $6495(3)$ $2908(9)$ $-2313(3)$ $84(1)$ $C(20)$ $5977(3)$ $3244(11)$ $-1934(3)$ $97(2)$ $C(21)$ $7323(2)$ $4214(8)$ $-3043(2)$ $77(1)$ $C(22)$ $7765(3)$ $2703(9)$ $-3053(2)$ $81(1)$ $C(23)$ $8369(4)$ $3877(10)$ $-4259(3)$ $102(2)$ $C(24)$ $9409(3)$ $3354(15)$ $-2945(4)$ $133(3)$	C(11)	2208(3)	3236(8)	553(2)	78(1)
C(13) $590(3)$ $2389(13)$ $424(3)$ $116(3)$ $C(14)$ $1634(4)$ $1780(13)$ $1733(3)$ $121(2)$ $C(15)$ $5702(3)$ $5114(11)$ $-1852(3)$ $89(2)$ $C(16)$ $5947(3)$ $6639(10)$ $-2192(3)$ $87(2)$ $C(17)$ $6448(3)$ $6289(8)$ $-2582(3)$ $80(1)$ $C(18)$ $6751(2)$ $4446(8)$ $-2652(2)$ $69(1)$ $C(19)$ $6495(3)$ $2908(9)$ $-2313(3)$ $84(1)$ $C(20)$ $5977(3)$ $3244(11)$ $-1934(3)$ $97(2)$ $C(21)$ $7323(2)$ $4214(8)$ $-3043(2)$ $77(1)$ $C(22)$ $7765(3)$ $2703(9)$ $-3053(2)$ $81(1)$ $C(23)$ $8369(4)$ $3877(10)$ $-4259(3)$ $102(2)$ $C(24)$ $9409(3)$ $3354(15)$ $-2945(4)$ $133(3)$	C(12)	1258(4)	5935(11)	1208(3)	108(2)
C(14) $1634(4)$ $1780(13)$ $1733(3)$ $121(2)$ $C(15)$ $5702(3)$ $5114(11)$ $-1852(3)$ $89(2)$ $C(16)$ $5947(3)$ $6639(10)$ $-2192(3)$ $87(2)$ $C(17)$ $6448(3)$ $6289(8)$ $-2582(3)$ $80(1)$ $C(18)$ $6751(2)$ $4446(8)$ $-2652(2)$ $69(1)$ $C(19)$ $6495(3)$ $2908(9)$ $-2313(3)$ $84(1)$ $C(20)$ $5977(3)$ $3244(11)$ $-1934(3)$ $97(2)$ $C(21)$ $7323(2)$ $4214(8)$ $-3043(2)$ $77(1)$ $C(22)$ $7765(3)$ $2703(9)$ $-3053(2)$ $81(1)$ $C(23)$ $8369(4)$ $3877(10)$ $-4259(3)$ $102(2)$ $C(24)$ $9409(3)$ $3354(15)$ $-2945(4)$ $133(3)$	C(13)	590(3)	2389(13)	424(3)	116(3)
C(15) $5702(3)$ $5114(11)$ $-1852(3)$ $89(2)$ $C(16)$ $5947(3)$ $6639(10)$ $-2192(3)$ $87(2)$ $C(17)$ $6448(3)$ $6289(8)$ $-2582(3)$ $80(1)$ $C(18)$ $6751(2)$ $4446(8)$ $-2652(2)$ $69(1)$ $C(19)$ $6495(3)$ $2908(9)$ $-2313(3)$ $84(1)$ $C(20)$ $5977(3)$ $3244(11)$ $-1934(3)$ $97(2)$ $C(21)$ $7323(2)$ $4214(8)$ $-3043(2)$ $77(1)$ $C(22)$ $7765(3)$ $2703(9)$ $-3053(2)$ $81(1)$ $C(23)$ $8369(4)$ $3877(10)$ $-4259(3)$ $102(2)$ $C(24)$ $9409(3)$ $3354(15)$ $-2945(4)$ $133(3)$	C(14)	1634(4)	1780(13)	1733(3)	121(2)
C(16) $5947(3)$ $6639(10)$ $-2192(3)$ $87(2)$ $C(17)$ $6448(3)$ $6289(8)$ $-2582(3)$ $80(1)$ $C(18)$ $6751(2)$ $4446(8)$ $-2652(2)$ $69(1)$ $C(19)$ $6495(3)$ $2908(9)$ $-2313(3)$ $84(1)$ $C(20)$ $5977(3)$ $3244(11)$ $-1934(3)$ $97(2)$ $C(21)$ $7323(2)$ $4214(8)$ $-3043(2)$ $77(1)$ $C(22)$ $7765(3)$ $2703(9)$ $-3053(2)$ $81(1)$ $C(23)$ $8369(4)$ $3877(10)$ $-4259(3)$ $102(2)$ $C(24)$ $9409(3)$ $3354(15)$ $-2945(4)$ $133(3)$	C(15)	5702(3)	5114(11)	-1852(3)	89(2)
C(17) $6448(3)$ $6289(8)$ $-2582(3)$ $80(1)$ $C(18)$ $6751(2)$ $4446(8)$ $-2652(2)$ $69(1)$ $C(19)$ $6495(3)$ $2908(9)$ $-2313(3)$ $84(1)$ $C(20)$ $5977(3)$ $3244(11)$ $-1934(3)$ $97(2)$ $C(21)$ $7323(2)$ $4214(8)$ $-3043(2)$ $77(1)$ $C(22)$ $7765(3)$ $2703(9)$ $-3053(2)$ $81(1)$ $C(23)$ $8369(4)$ $3877(10)$ $-4259(3)$ $102(2)$ $C(24)$ $9409(3)$ $3354(15)$ $-2945(4)$ $133(3)$	C(16)	5947(3)	6639(10)	-2192(3)	87(2)
C(18) $6751(2)$ $4446(8)$ $-2652(2)$ $69(1)$ $C(19)$ $6495(3)$ $2908(9)$ $-2313(3)$ $84(1)$ $C(20)$ $5977(3)$ $3244(11)$ $-1934(3)$ $97(2)$ $C(21)$ $7323(2)$ $4214(8)$ $-3043(2)$ $77(1)$ $C(22)$ $7765(3)$ $2703(9)$ $-3053(2)$ $81(1)$ $C(23)$ $8369(4)$ $3877(10)$ $-4259(3)$ $102(2)$ $C(24)$ $9409(3)$ $3354(15)$ $-2945(4)$ $133(3)$	C(17)	6448(3)	6289(8)	-2582(3)	80(1)
C(19) $6495(3)$ $2908(9)$ $-2313(3)$ $84(1)$ $C(20)$ $5977(3)$ $3244(11)$ $-1934(3)$ $97(2)$ $C(21)$ $7323(2)$ $4214(8)$ $-3043(2)$ $77(1)$ $C(22)$ $7765(3)$ $2703(9)$ $-3053(2)$ $81(1)$ $C(23)$ $8369(4)$ $3877(10)$ $-4259(3)$ $102(2)$ $C(24)$ $9409(3)$ $3354(15)$ $-2945(4)$ $133(3)$	C(18)	6751(2)	4446(8)	-2652(2)	69(1)
C(20)5977(3)3244(11)-1934(3)97(2)C(21)7323(2)4214(8)-3043(2)77(1)C(22)7765(3)2703(9)-3053(2)81(1)C(23)8369(4)3877(10)-4259(3)102(2)C(24)9409(3)3354(15)-2945(4)133(3)C(25)8645(4)244(11)2658(2)117(2)	C(19)	6495(3)	2908(9)	-2313(3)	84(1)
C(21)7323(2)4214(8)-3043(2)77(1)C(22)7765(3)2703(9)-3053(2)81(1)C(23)8369(4)3877(10)-4259(3)102(2)C(24)9409(3)3354(15)-2945(4)133(3)C(25)8645(4)244(11)2658(2)117(2)	C(20)	5977(3)	3244(11)	-1934(3)	97(2)
C(22)7765(3)2703(9)-3053(2)81(1)C(23)8369(4)3877(10)-4259(3)102(2)C(24)9409(3)3354(15)-2945(4)133(3)C(25)8645(4)244(11)2658(2)117(2)	C(21)	7323(2)	4214(8)	-3043(2)	77(1)
C(23) $8369(4)$ $3877(10)$ $-4259(3)$ $102(2)$ C(24) $9409(3)$ $3354(15)$ $-2945(4)$ $133(3)$ C(25) $8645(4)$ $244(11)$ $2658(2)$ $117(2)$	C(22)	7765(3)	2703(9)	-3053(2)	81(1)
C(24) 9409(3) 3354(15) -2945(4) 133(3) C(25) 8645(4) 244(11) 2658(2) 117(2)	C(23)	8369(4)	3877(10)	-4259(3)	102(2)
C(25) $8645(4)$ $244(11)$ $2659(2)$ $117(2)$	C(24)	9409(3)	3354(15)	-2945(4)	133(3)
C(23) $0043(4)$ $-244(11)$ $-3038(3)$ $11/(2)$	C(25)	8645(4)	-244(11)	-3658(3)	117(2)

Table S3 Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **5**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S4 Bond lengths [Å] and angles [°] for 5.

1.840(6)
1.845(5)
1.850(7)
1.862(7)
1.837(6)
1.845(7)
1.852(5)
1.882(7)
1.113(7)
1.424(8)
0.965(11)
1.818(13)
1.757(12)
1.361(11)
1.398(11)
1.393(7)
1.371(7)
1.404(8)
1.472(5)
1.358(7)
1.322(7)
1.377(9)
1.382(9)
1.369(7)
1.381(7)
1.392(7)
1.465(6)
1.375(7)
1.306(7)
107.9(3)
109.9(4)
110.5(3)
108.9(4)
109.9(3)
109.7(4)
110.1(4)

C(23)-Si(2)-C(22)	112.0(3)
C(24)-Si(2)-C(22)	108.9(3)
C(23)-Si(2)-C(25)	110.0(3)
C(24)-Si(2)-C(25)	108.9(4)
C(22)-Si(2)-C(25)	106.9(3)
N(1)-C(1)-C(2)	177.8(8)
C(3)-C(2)-C(1)	152.8(16)
C(3)-C(2)-C(15)	97.1(11)
C(1)-C(2)-C(15)	110.1(8)
C(2)-C(3)-C(4)	102.8(11)
C(5)-C(4)-C(9)	117.2(5)
C(5)-C(4)-C(3)	135.4(7)
C(9)-C(4)-C(3)	107.3(6)
C(4)-C(5)-C(6)	121.1(6)
C(7)-C(6)-C(5)	121.9(6)
C(6)-C(7)-C(8)	116.7(4)
C(6)-C(7)-C(10)	120.2(5)
C(8)-C(7)-C(10)	123.0(5)
C(9)-C(8)-C(7)	121.0(6)
C(8)-C(9)-C(4)	121.9(7)
C(11)-C(10)-C(7)	127.9(5)
C(10)-C(11)-Si(1)	126.1(4)
C(16)-C(15)-C(20)	116.7(4)
C(16)-C(15)-C(2)	114.7(5)
C(20)-C(15)-C(2)	128.6(5)
C(17)-C(16)-C(15)	120.6(6)
C(16)-C(17)-C(18)	123.5(5)
C(17)-C(18)-C(19)	115.5(4)
C(17)-C(18)-C(21)	120.4(4)
C(19)-C(18)-C(21)	124.1(5)
C(20)-C(19)-C(18)	121.1(5)
C(19)-C(20)-C(15)	122.4(5)
C(22)-C(21)-C(18)	127.7(5)
C(21)-C(22)-Si(2)	128.2(4)

Symmetry transformations used to generate equivalent atoms:

Table S5 Anisotropic displacement parameters (Å²x 10³) for **5**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
Si(1)	69(1)	104(1)	66(1)	-6(1)	28(1)	-16(1)
Si(2)	66(1)	107(1)	68(1)	-8(1)	26(1)	12(1)
N(1)	192(5)	46(2)	150(5)	-2(3)	104(4)	-6(3)
C(1)	102(4)	54(3)	109(4)	10(3)	43(3)	5(2)
C(2)	197(9)	38(3)	224(10)	17(4)	-131(8)	-11(4)
C(3)	193(8)	46(3)	173(8)	-10(4)	-83(7)	4(4)
C(4)	57(3)	181(7)	76(3)	24(4)	22(2)	16(3)
C(5)	72(3)	130(6)	111(4)	44(4)	28(3)	-9(3)
C(6)	70(3)	93(4)	100(3)	8(3)	35(3)	1(2)
C(7)	55(2)	84(3)	66(2)	0(2)	22(2)	-1(2)
C(8)	71(3)	113(4)	98(4)	-21(3)	39(3)	-7(3)
C(9)	78(3)	149(6)	99(4)	-26(4)	42(3)	11(4)
C(10)	67(2)	77(3)	70(2)	-8(2)	28(2)	-7(2)
C(11)	79(3)	86(3)	76(3)	-8(2)	32(2)	-16(2)
C(12)	118(5)	114(5)	103(4)	-17(4)	47(4)	2(4)
C(13)	83(4)	163(7)	108(5)	-30(5)	33(3)	-34(4)
C(14)	117(5)	140(7)	111(5)	24(5)	33(4)	-29(4)
C(15)	59(3)	132(5)	76(3)	-4(3)	16(2)	24(3)
C(16)	78(3)	102(4)	85(3)	-2(3)	25(3)	22(3)
C(17)	68(3)	82(3)	96(3)	4(3)	30(2)	10(2)
C(18)	57(2)	80(3)	75(2)	1(2)	23(2)	-4(2)
C(19)	78(3)	76(3)	111(4)	2(3)	47(3)	1(2)
C(20)	74(3)	120(5)	106(4)	24(4)	44(3)	-14(3)
C(21)	69(3)	84(3)	84(3)	6(3)	32(2)	4(2)
C(22)	78(3)	91(4)	82(3)	5(3)	34(2)	7(3)
C(23)	108(4)	102(4)	103(4)	14(4)	36(3)	7(3)
C(24)	76(4)	208(10)	118(5)	-40(6)	27(3)	-8(4)
C(25)	142(5)	110(5)	104(4)	-1(4)	39(4)	34(4)

Fig. S3 ¹H NMR spectrum of 8

Fig. S4 ¹³C NMR spectrum of 8

Fig. S5 ¹H NMR spectrum of 9

Fig. S6¹³C NMR spectrum of 9

Fig. S7 ¹H NMR spectrum of 5

Fig. S8 ¹³C NMR spectrum of 5

Fig. S9 ¹H NMR spectrum of 12

Fig. S10 13 C NMR spectrum of 12

Fig. S11 ¹H NMR spectrum of 3a

Fig. S12 ¹H NMR spectrum of 3b

Fig. S13 ¹H NMR spectrum of 4