Supporting Information

Reducing Polyazomethine to Poly(N-phenylbenzylamine) with Near Infrared Electrochromic, Fluorescence and Photovoltaic Properties Jiwei Cai^a, Ping Zhao^b, Haijun Niu^{a*}, Yongfu Lian^a, Cheng Wang^a, Xuduo Bai^{a*}, Wen Wang^c

^a Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Department of Macromolecular Science and Engineering, Heilongjiang University, Harbin 150086, P R China b School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150080, P R China

* Corresponding author: Tel: 086-13684501571; Fax: 086-0451-86608131; email:

haijunniu@hotmail.com

Fig.S1 IR spectra of RPAM-a-RPAM-e

Fig. S2¹H NMR spectra of RPAM-a – RPAM-e

Fig. S3 TG diagrams of RPAM-a to RPAM-e

Fig.S4 Changes of PL intensity of RPAM-a - RPAM-d in THF before and after addition of TFA in THF. (The inset describes the PL dependence of the concentration of TFA)

Fig.S5 PL spectra of RPAM-b (concentration: 1.0×10^{-5} mol L⁻¹ C-N bonds) on addition of various

concentrations of proton in the mixed solvent (THF/H₂O 1:1 v/v).

Fig.S6 Repetitive CV scanning of the RPAM-a, RPAM-b, RPAM-c, RPAM-e film on the ITO/glass electrode in 0.1 M LiClO₄/MeCN solution over the potential range from 0 to 1.6 V at a scan rate of 50 mV/s

Fig.S7 Electrochromic behavior of RPAM-a, RPAM-b, RPAM-c, RPAM-e thin film (in CH₃CN with 0.1 M LiClO₄ as the supporting Electrolyte) 0.0-1.6(V vs. Ag/AgCl)

Fig. S8 Dynamic changes of the transmittance and current upon switching the potential between -0.2 and 1.0 V (vs. Ag/ AgCl) with a pulse width of 8 s applied to the cast film of polymer RPAM-d on the ITO-coated glass slide in MeCN containing 0.1 mol L^{-1} LiClO₄. The absorption was recorded at 551 nm.

Fig.S9 Current consumption between -0.2 and 1.0 V (vs. Ag/AgCl) of polymer RPAM-b,

RPAM-c, RPAM-d, RPAM-e thin film on the ITO-coated glass substrate in a 0.1 moll⁻¹

LiClO₄/CH₃CN solution with a cycle time of 8 s.

Fig.S10 A typical photocurrent and photovoltaic response for an RPAM-b ,RPAM-c, RPAM-e immobilized ITO glass upon exposure to on/off light at room temperature.