Supporting information

Homopolymerization of DMMA and SGMMA

Figure 1SI. Evolution of monomer conversion as a function of time (*left*) and of $\overline{M_n}$ and polydispersity as a function of monomer conversion (*right*) for the ATRP of DMMA (open symbols) and SGMMA (closed symbols) initiated by ethyl 2-bromoisobutyrate. Polymerization conditions: [initiator]:[CuCl]:[HMTETA] :[monomer] = 1:1:1:30, reaction carried out at 45 °C in THF (33 wt.%) for DMMA and at 70 °C in dioxane (50 wt.%) for SGMMA.

Table 1SI. Summary of the deprotection conditions and results for Sil-DMMA3 and Sil-SGMMA3 (reaction time: 8 hours, but negligible differences were recorded after 48 hours). With Sil-DMMA3 two fractions were generally obtained, a water-soluble and a water-insoluble one. The two parameters, PDMS/PGMMA and residual protecting group, respectively provide information about the integrity of the macromolecular structure and the efficiency of deprotection.

			$^{1}\mathrm{H}$ I	NMR
Sample	Physical state	Aqueous acid ^a	PDMS/PGMMA	Residual protecting
			(mol/mol)	groups (mol %) ^c
Sil-DMMA3	=	=	1.1	100
	dispersion	10X, 3.7%HCl	0.7 (<i>water sol.</i>)	57 (water sol.)
			1.1 (water ins)	92 (water ins.)
	10% THF sol.	0.4X, 3.7 % HCl	0.7 (<i>water sol.</i>)	39 (water sol.)
			1.5 (water ins.)	46 (water ins.)
	dispersion	10X, 44% HCOOH	1.2 (<i>water sol.</i>)	11 (water sol.)
			=	=
	10% THF sol.	0.4X, 44% HCOOH	=	=
			1.1 (water ins.)	90 (water ins.)
	dispersion	10X, 66% HCOOH	0 (water sol.)	0(water sol.)
			10.6 (water ins.)	0 (water ins.)
	10 %THF sol.	0.4X, 66% HCOOH	=	=
			1.1 (water ins.)	91 (water ins.)
Sil-SGMMA3	=	=	1.3	100
	10 % THF sol.	$1X H_2O + 1X AcOH$	1.2	2
	10 % THF sol.	$1X H_2O + 2X AcOH$	1.4	4
	10 % THF sol.	$1X H_2O + 3X AcOH$	1.4	0
	10 % THF sol.	$1X H_2O + 4X AcOH$	1.4	1
	10 %THF sol.	$1X H_2O + 5X AcOH$	1.1	2

^a expressed in relation to the weight of polymer; for example, if 100 mg of polymer, 10X means 1 g of aqueous acidic phase.

^b ratio between the integrals of the peak at 0 ppm (Si-CH₃) and that of the peak at 0.8-1.2 ppm (polymer chain CH₃). ± 0.1

^c ratio between the integrals of the peak at 1.3 ppm (C(CH₃)₂) or of that at 0.05-0.13 ppm (Si-CH₃) and that of the peak at 0.8-1.2 ppm (polymer chain CH₃).

Sample	DP_n a		
Jumpie	protected	deprotected	
SII-(S)GMMA1	22	13	
SII-(S)GMMA2	29	20	
SII-(S)GMMA3	44	40	
SII-(S)GMMA4	53	55	
SII-(S)GMMA5	78	76	
SII-(S)GMMA6	102	122	

Table 2SI. Degree of polymerization of the methacrylic chain for the different Sil-SGMMA copolymers before and after deprotection with a 1:5 polymer/AcOH weight ratio.

^a Calculated from the ratio of the ¹H NMR resonance of P(S)GMMA chain group (CH₃ at 0.7-1.2 ppm) and the resonance of PDMS chain (CH₃ at 0.07 ppm in CDCl₃ for the polymers before deprotection and at -0.06 ppm in DMSO-d6 for the deprotected polymers)

Figure 2SI. Size distributions of 1 mg/ml suspensions of Sil-GMMA triblock copolymers in PBS 10% D_2O prepared by dilution of a DMSO solution measured by DLS.

Figure 3SI. DOSY plots for BSA (*top*) and BPF (*bottom*) in PBS $10\%D_2O$. For both proteins the commercially available samples contained small amounts of methanol, which is responsible of the sharp peak at 3.5 ppm; it is easy to see that the methanol peak is associated with a higher diffusion coefficient. Resonances of ethylene glycol are also visible in the BPF monodimensional spectrum, but do not appear in the full DOSY spectrum due to the their low intensity. Solvent suppression was used in the case of BPF to remove the intense water signal.