Electronic Supplementary Information

Ring-Opening Metathesis Polymerization of Cyclooctene Derivatives with Chain Transfer Agents derived from Glycerol Carbonate

Abdou K. Diallo, Liana Annunziata, Stéphane Fouquay, Guillaume Michaud, Frédéric Simon, Jean-Michel Brusson, Sophie M. Guillaume and Jean-François Carpentier

Table of contents

Figure S1. FT-IR spectrum (ATR) of an α, ω -di(GC)-PCOE synthesized in the presence of 1 S5
Figure S2. ¹ H NMR spectrum (CDCl ₃ , 500 MHz, 298 K) of an α , ω -di(GC)-PCOE synthesized
in the presence of 2 S6
Figure S3. ¹³ C{ ¹ H} NMR spectrum (CDCl ₃ , 100 MHz, 298 K) of an α,ω -di(GC)-PCOE
synthesized in the presence of 2 S7
Figure S4. FT-IR spectrum (ATR) of an α, ω -di(GC)-PCOE synthesized in the presence of 2 S8
Figure S5. Variation of the molar mass of PCOE obtained in the presence of 2 as a function of
time S8
Figure S6. ¹ H NMR monitoring of the formation of α -GC, ω -vinyl-PCOE and α , ω -di(GC)-
PCOE during the ROMP of COE in the presence of 2 and DCM as solvent of reaction S9
Figure S7. Gas chromatogram showing the ethylene released during the ROMP of COE in the
presence of 2 S9
Figure S8. ¹ H NMR spectrum (CDCl ₃ , 500 MHz, 298 K) of an α-GC,ω-vinyl-P(3-Me-COE)
prepared from 1 S10
Figure S9. ¹³ C{ ¹ H} NMR spectrum (CDCl ₃ , 100 MHz, 298 K) of an α -GC, ω -vinyl-P(3-Me-
COE) prepared from 1 S11
Figure S10. DSC thermogram (second heating cycle) of an α -GC, ω -vinyl-P(3-Me-COE)
prepared from 1 S11
Figure S11. ¹ H NMR spectrum (CDCl ₃ , 500 MHz, 298 K) of an α-GC,ω-vinyl-P(3-Me-COE)
prepared from 2 S12

Figure S12. ¹³ C{ ¹ H} NMR spectrum (CDCl ₃ , 100 MHz, 298 K) of an α -GC, ω -vinyl-P(3-Me
COE) prepared from 2 S13
Figure S13. ¹ H NMR spectrum (CDCl ₃ , 500 MHz, 298 K) of an α-GC, ω-vinyl-P(3-Et-COE
prepared from 1 S14
Figure S14. ¹³ C{ ¹ H} NMR spectrum (CDCl ₃ , 100 MHz, 298 K) of an α -GC, ω -vinyl-P(3-Et
COE) prepared from 1 S15
Figure S15. DSC thermogram (second heating cycle) of an α -GC, ω -vinyl-P(3-Et-COE
prepared from 1 S16
Figure S16. ¹ H- ¹ H COSY NMR spectrum (CDCl ₃ , 500 MHz, 298 K) of an α-GC,ω-vinyl-P(3
Et-COE) prepared from 2 S16
Figure S17. ¹³ C{ ¹ H} (DEPT 135) NMR spectrum (CDCl ₃ , 50 MHz, 298 K) of an α -GC, ω
vinyl-P(3-Et-COE) prepared from 2 S17
Figure S18. FT-IR spectrum (ATR) of an α -GC, ω -vinyl-P(3-Et-COE) prepared from 2 S17
Figure S19. ¹ H NMR spectrum (CDCl ₃ , 500 MHz, 298 K) of an α -GC, ω -vinyl-P(3- <i>n</i> -hexyl-
COE) prepared from 1 S18
Figure S20. ¹³ C{ ¹ H} NMR spectrum (CDCl ₃ , 100 MHz, 298 K) of an α -GC, ω -vinyl-P(3- <i>n</i>)
hexyl-COE) prepared from 1 S19
Figure S21. DSC thermogram (second heating cycle) of an α -GC, ω -vinyl-P(3- <i>n</i> -hexyl-COE
prepared from 1 S20
Figure S22. ¹ H NMR spectrum (CDCl ₃ , 500 MHz, 298 K) of an α-GC,ω-vinyl-P(3- <i>n</i> -hexyl-
COE) prepared from 2 S21
Figure S23. ¹³ C{ ¹ H} NMR spectrum (CDCl ₃ , 100 MHz, 298 K) of an α -GC, ω -vinyl-P(3- <i>n</i>)
hexylCOE) prepared from 2 S22

Figure S24 . ¹ H NMR spectrum (CDCl ₃ , 500 MHz, 298 K) of an α,ω-di(GC)-P(5,6-epoxy-COE
prepared from 2 S2.
Figure S25. ¹³ C{ ¹ H} NMR spectrum (CDCl ₃ , 100 MHz, 298 K) of an α,ω -di(GC)-P(5,6-epoxy
COE) prepared from 2 S24
Figure S26. DSC thermogram (second heating cycle) of an α,ω -di(GC)-P(5,6-epoxy-COE
prepared from 2 S2:
Figure S27. ¹ H NMR spectrum (CDCl ₃ /CD ₃ OD, 500 MHz, 298 K) of an α , ω -di(GC)-P(5-OH
COE) prepared from 2 S26
Figure S28. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl ₃ /CD ₃ OD, 100 MHz, 298 K) of an
α, ω -di(GC)-P(5-OH-COE) prepared from 2 S27
Figure S29. ¹ H NMR spectrum (CDCl ₃ , 500 MHz, 298 K) of a mixture of α,ω -di(GC)-P(5
O=COE) and α-GC,ω-vinyl-P(5-O=COE) prepared from 2 S28
Figure S30. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl ₃ , 100 MHz, 298 K) of a mixture of
α, ω -di(GC)-P(5-O=COE) and α -GC, ω -vinyl-P(5-O=COE) prepared from 2 S29

Figure S1. FT-IR spectrum (ATR) of an α, ω -di(**GC**)-PCOE synthesized from the ROMP of COE in the presence of **1** (Table 1, entry 1).

Figure S2. ¹H NMR spectrum (CDCl₃, 500 MHz, 298 K) of an α,ω -di(**GC**)-PCOE (Table 1, entry 3). δ_{ppm} : repeating unit: 5.36, 1.97, 1.29, chain-end groups: 7.03 (m, *CH*=CH-CO₂), 5.84 (m, CH=*CH*-CO₂), 4.94 (broad signal, CH₂-CH-CH₂OCOO), 4.55–4.32 (m, *CH*₂-CH-CH₂OCOO) and CH₂-CH-*CH*₂OCOO) (* stands for residual solvent resonance).

Figure S3. ¹³C{¹H} NMR spectrum (CDCl₃, 100 MHz, 298 K) of an α,ω-di(**GC**)-PCOE (Table 1, entry 3). δ_{ppm} : repeating unit: 130.3, 129.9, 32.6, 29.8–27.2, chain-end groups: 165.8 (OC=O), 154.3 (O=COO), 152.0 (*CH*=CH-COO), 119.7 (CH=*CH*-COO), 73.9 (CH₂-*CH*-CH₂OCOO), 66.0, 62.8 (*CH*₂-CH-CH₂OCOO and CH₂-CH-*CH*₂OCOO) (* stands for residual solvent resonance).

Figure S4. FT-IR spectrum (ATR) of an α, ω -di(**GC**)-PCOE synthesized from the ROMP of COE in the presence of **2** (Table 1, entry 3).

Figure S5. Variation of the molar mass of PCOE obtained in the presence of **2** as a function of time (Table 1, entry 3).

Figure 6. ¹H NMR monitoring of the formation of α -GC, ω -vinyl-PCOE (monofunctional, \blacklozenge) and α, ω -di(GC)-PCOE (bifunctional, \blacksquare) during the ROMP of COE in the presence of **2** and DCM as solvent of reaction.

Figure S7. Gas chromatogram showing the ethylene released during the ROMP of COE in the presence of **2** (Table 1, entry 3).

Figure S8. ¹H NMR spectrum (CDCl₃, 500 MHz, 298 K) of an α-GC,ω-vinyl-P(3-Me-COE) prepared from **1** (Table 1, entry 5). δ_{ppm} : repeating unit: 5.39–5.18, 2.04-1.95, 1.34, 1.25, 0.94, chain-end groups: 5.87 (m, *CH*=CH-CH-OCO₂), 5.75 (m, CH=*CH*-CH-OCO₂), 5.45 (CH₂=*CH*-CH), 4.89 (m, *CH*₂=CH-CH and CH=CH-CH-OCO₂), 4.57–4.09 (CH-*CH*₂-OCOO), 2.04 (m, CH₂=CH-*CH*) (* stands for residual solvent resonance).

Figure S9. ¹³C{¹H} NMR spectrum (CDCl₃, 100 MHz, 298 K) of an α-**GC**,ω-vinyl-P(3-Me-COE) prepared from **1** (Table 1, entry 5). δ_{ppm} : repeating unit: 133.8, 132.0, 127.7, 125.8, 34.7-27.7, 18.5. Chain-end groups: 152.2 (O=COO), 142.9 (*CH*=CH-CHOCOO), 142.2 (CH₂=*CH*-CH), 119.8 (CH=*CH*-CHOCOO), 109.7 (*CH*₂=CH-CH), 75.4 (CH=CH-*CH*OCOO), 66.8 (CH-*CH*₂-OCOO) (* stands for residual solvent resonance).

Figure S10. DSC thermogram (second heating cycle) of an α -GC, ω -vinyl-P(3-Me-COE) prepared from 1 ($T_g = -64$ °C) synthesized from the ROMP of 3-Me-COE in the presence of 1 (Table 1, entry 5).

Figure S11. ¹H NMR spectrum (CDCl₃, 500 MHz, 298 K) of an α -GC, ω -vinyl-PCOE prepared from **2** (Table 1, entry 7). δ_{ppm} : repeating unit: 5.39-5.20, 2.04–1.97, 1.34, 1.25, 0.94. Chain-end groups: 6.94 (m, *CH*=CH-CO₂), 5.80 (m, CH=*CH*-CO₂), 5.66 (m, CH₂=*CH*-CH), 4.90 (m, *CH*₂=CH-CH and CH=CH-*CH*-OCO₂), 4.57–4.33 (m, *CH*₂-CH-CH₂OCOO and CH₂-CH-*CH*₂OCOO), 2.05 (m, CH₂=*CH*-CH) (* stands for residual solvent resonance).

Figure S12. ¹³C{¹H} NMR spectrum (CDCl₃, 100 MHz, 298 K) of an α-GC,ω-vinyl-P(3-Me-COE) prepared from **2** (Table 1, entry 7). δ_{ppm} : repeating unit: 136.4, 134.5, 130.3, 128.4, 37.3–27.2, 21.0. Chain-end groups: 165.8 (OC=O), 154.3 (O=COO), 151.9 (*CH*=CH-COO), 144.8 (CH₂=*CH*-CH), 119.7 (CH=*CH*-COO), 112.3 (*CH*₂=CH-CH), 73.9 (CH₂-*CH*-CH₂OCOO), 66.0, 62.8 (*CH*₂-CH-CH₂OCOO and CH₂-CH-*CH*₂OCOO) (* stands for residual solvent resonance).

Figure S13. ¹H NMR spectrum (CDCl₃, 500 MHz, 298 K) of an α-**GC**,ω-vinyl-P(3-Et-COE) prepared from **1** (Table 1, entry 9). δ_{ppm} : repeating unit: 5.38–5.00, 1.99-1.95, 1.75, 1.35–1.28, 0.81. Chain-end groups: 5.66 (m, *CH*=CH-CH-OCO₂), 5.50 (m, CH=*CH*-CH-OCO₂), 5.45 (CH₂=*CH*-CH and CH=*CH*-CH-OCO₂), 5.00 (m, *CH*₂=CH-CH, and CH=CH-*CH*-OCO₂), 4.57–4.09 (CH-*CH*₂-OCOO), 1.75 (m, CH₂=CH-*CH*) (* stands for residual solvent resonance).

Figure S14. ¹³C{¹H} NMR spectrum (CDCl₃, 100 MHz, 298 K) of an α-GC,ω-vinyl-P(3-Et-COE) prepared from **1** (Table 1, entry 9). δ_{ppm} : repeating unit: 134.7, 130.3, 40.6, 38.9–27.2, 11.8. Chain-end groups: 154.8 (O=COO), 144.0 (*CH*=CH-CHOCOO), 143.3 (CH₂=*CH*-CH), 124.0 (CH=*CH*-CHOCOO), 114.0 (*CH*₂=CH-CH), 77.9 (CH=CH-*CH*OCOO), 69.5 (CH-*CH*₂-OCOO) (* stands for residual solvent resonance).

Figure S15. DSC thermogram (second heating cycle) of an α -GC, ω -vinyl-P(3-Et-COE) ($T_g = -69$ °C) synthesized from the ROMP of 3-Et-COE in the presence of **1** (Table 1, entry 9).

Figure S16. ¹H-¹H COSY NMR spectrum (CDCl₃, 500 MHz, 298 K) of an α -GC, ω -vinyl-P(3-Et-COE) prepared from **2** (Table 1, entry 11).

Figure S17. ¹³C{¹H} (DEPT 135) NMR spectrum (CDCl₃, 50 MHz, 298 K) of an α-**GC**, ωvinyl-P(3-Et-COE) prepared from **2** (Table 1, entry 11). δ_{ppm} : repeating unit: 134.7, 130.3, 44.7, 35.3–27.2, 11.8. Chain-end groups: 151.8 (*CH*=CH-COO), 143.1 (CH₂=*CH*-CH), 119.8 (CH=*CH*-COO), 114.1 (*CH*₂=CH-CH), 73.9 (CH₂-*CH*-CH₂OCOO), 66.0, 62.8 (*CH*₂-CH-CH₂OCOO and CH₂-CH-*CH*₂OCOO), 45.9 (CH₂=CH-*CH*).

Figure S18. FT-IR spectrum (ATR) of an α -GC, ω -vinyl-P(3-Et-COE) synthesized from the ROMP of 3-Et-COE in the presence of **2** (Table 1, entry 11).

Figure S19. ¹H NMR spectrum (CDCl₃, 500 MHz, 298 K) of an α-**GC**,ω-vinyl-P(3-*n*-hexyl-COE) prepared from **1** (Table 1, entry 13). δ_{ppm} : repeating unit: 5.34–5.07, 2.02-1.97, 1.87, 1.31–1.21, 0.90. Chain-end groups: 5.68 (m, *CH*=CH-CO₂), 5.46 (m, CH=*CH*-CH-OCO₂ and CH=*CH*-CH-OCO₂), 5.00 (m, *CH*₂=CH-CH, and CH=CH-*CH*-OCO₂), 4.57–4.09 (CH-*CH*₂-OCOO), 1.87 (m, CH₂=CH-*CH*) (* stands for residual solvent resonance).

Figure S20. ¹³C{¹H} NMR spectrum (CDCl₃, 100 MHz, 298 K) of an α-GC,ω-vinyl-P(3-*n*-hexyl-COE) prepared from **1** (Table 1, entry 13). δ_{ppm} : repeating unit: 135.0, 130.0, 42.9, 35.7–22.7, 14.1. Chain-end groups: 154.7 (O=COO), 144.3 (*CH*=CH-CHOCOO), 143.6 (CH₂=*CH*-CH), 123.8 (CH=*CH*-CHOCOO), 113.8 (*CH*₂=CH-CH), 77.9 (CH=CH-*CH*OCOO), 69.5 (CH-*CH*₂-OCOO), 44.2 (CH₂=CH-*CH*) (* stands for residual solvent resonance).

Figure S21. DSC thermogram (second heating cycle) of an α -GC, ω -vinyl–P(3-*n*-hexyl-COE) ($T_g = -77$ °C) synthesized from the ROMP of 3-*n*-hexyl-COE in the presence of **1** (Table 1, entry 13).

Figure S22. ¹H NMR spectrum (CDCl₃, 500 MHz, 298 K) of an α -GC, ω -vinyl-P(3-*n*-hexyl-COE) prepared from **2** (Table 1, entry 15). δ_{ppm} : repeating unit: 5.33–5.05, 1.99, 1.84, 1.33-1.15, 0.87. Chain-end groups: 7.03 (m, *CH*=CH-CO₂), 5.82 (m, CH=*CH*-CO₂), 5.48 (m, CH₂=*CH*-CH), 4.91 (m, *CH*₂=CH-CH, and CH=CH-CH-OCO₂), 4.58–4.31 (m, *CH*₂-CH-CH₂OCOO and CH₂-CH-*CH*₂OCOO), 1.84 (m, CH₂=*CH*-CH) (* stands for residual solvent resonance).

Figure S23. ¹³C{¹H} NMR spectrum (CDCl₃, 100 MHz, 298 K) of an α-GC,ω-vinyl-P(3-*n*-hexyl-COE) prepared from **2** (Table 1, entry 15). δ_{ppm} : repeating unit: 134.1, 129.1, 42.0, 34.8–21.8, 13.2. Chain-end groups: 164.8 (OC=O), 153.3 (O=COO), 150.9 (*CH*=CH-COO), 142.5 (CH₂=*CH*-CH), 118.9 (CH=*CH*-COO), 112.9 (*CH*₂=CH-CH), 73.0 (CH₂-*CH*-CH₂OCOO), 65.1, 61.9 (*CH*₂-CH-CH₂OCOO and CH₂-CH-*CH*₂OCOO), 43.3 (CH₂=CH-*CH*) (* stands for residual solvent resonance).

Figure S24. ¹H NMR spectrum (CDCl₃, 500 MHz, 298 K) of an α,ω-di(**GC**)-P(5,6-epoxy-COE) prepared from **2** (Table 1, entry 18). δ_{ppm} : repeating unit: 5.43-5.29, 2.72, 2.07–1.89, 1.47-1.32 chain-end groups: 6.84 (m, *CH*=CH-CO₂), 5.72 (m, CH=*CH*-CO₂), 4.79 (broad signal, CH₂-C*H*-CH₂OCOO), 4.40–4.11 (m, *CH*₂-CH-CH₂OCOO and CH₂-CH-*CH*₂OCOO) (* stands for residual solvent resonance).

Figure S25. ¹³C{¹H} NMR spectrum (CDCl₃, 100 MHz, 298 K) of an α,ω-di(**GC**)-P(5,6-epoxy-COE) prepared from **2** (Table 1, entry 18). δ_{ppm} : repeating unit: 131.7–129.3, 56.7, 32.1–24.2, chain-end groups: 165.3 (OC=O), 154.3 (O=COO), 149.7 (*CH*=CH-COO), 120.5 (CH=*CH*-COO), 73.8 (CH₂-*CH*-CH₂OCOO), 65.9, 62.9 (*CH*₂-CH-CH₂OCOO and CH₂-CH-*CH*₂OCOO) (* stands for residual solvent resonance).

Figure S26. DSC thermogram (second heating cycle) of an α, ω -di(**GC**)-P(5,6-epoxy-COE) ($T_g = -48$ °C) synthesized from the ROMP of 5,6-epoxy-COE in the presence of **2** (Table 1, entry 18).

Figure S27. ¹H NMR spectrum (CDCl₃/CD₃OD, 500 MHz, 298 K) of an α,ω-di(**GC**)-P(5-OH-COE) prepared from **2** (Table 1, entry 19). δ_{ppm} : repeating unit: 4.99, 4.94, 3.10, 1.68, 1.61, 1.57, 1.04–0.99, chain-end groups: 6.57 (m, *CH*=CH-CO₂), 5.43 (m, CH=*CH*-CO₂), 4.61 (broad peak, CH₂-CH-CH₂OCOO), 4.21–3.90 (m, *CH*₂-CH-CH₂OCOO and CH₂-CH-*CH*₂OCOO) (* stands for residual solvent resonance).

Figure S28. ¹³C{¹H} NMR spectrum (CDCl₃/CD₃OD, 100 MHz, 298 K) of an α,ω-di(**GC**)-P(5-OH-COE) prepared from **2** (Table 1, entry 19). δ_{ppm} : repeating unit: 130.2–130.1, 70.5, 37.0, 36.6, 32.5, 28.6, 25.5, 23.4, chain-end groups: 166.1(OC=O), 155.5 (O=COO), 151.4 (*CH*=CH-COO), 119.8 (CH=*CH*-COO), 74.5 (CH₂-*CH*-CH₂OCOO), 66.4, 63.1 (*CH*₂-CH-CH₂OCOO and CH₂-CH-*CH*₂OCOO) (* stands for residual solvent resonance).

Figure S29. ¹H NMR spectrum (CDCl₃, 500 MHz, 298 K) of a mixture of α,ω-di(**GC**)-P(5-O=COE) and α-**GC**,ω-vinyl-P(5-O=COE) prepared from **2** (Table 1, entry 20). δ_{ppm} : repeating unit: 5.35, 5.32, 2.53, 2.38, 2.32, 2.17, 1.91, 1.71, 1.56, chain-end groups: 6.91 (m, *CH*=CH-CO₂), 6.05–5.78 (m, CH=*CH*-CO₂ and CH₂=*CH*-CH₂), 4.89 (broad signal, CH₂-C*H*-CH₂OCOO and *CH*₂=CH-CH₂), 4.57–4.29 (m, *CH*₂-CH-CH₂OCOO and CH₂-CH-*CH*₂OCOO) (* stands for residual solvent resonance).

Figure S30. ¹³C{¹H} NMR spectrum (CDCl₃, 100 MHz, 298 K) of a mixture of α,ω-di(**GC**)-P(5-O=COE) and α-**GC**,ω-vinyl-P(5-O=COE) prepared from **2** (Table 1, entry 20). δ_{ppm} : repeating unit: 210.2, 130.3–128.8, 42.4–41.9, 31.8, 26.7, 26.5, 23.5, 23.3, 21.5, chain-end groups: 165.4 (OC=O), 154.4 (O=COO), 150.5 (*CH*=CH-COO), 137.9 (CH₂=*CH*-CH₂), 120.4 (CH=*CH*-COO), 115.1 (*CH*₂=CH-CH₂), 73.9 (CH₂-*CH*-CH₂OCOO), 66.1, 62.9 (*CH*₂-CH-CH₂OCOO) (* stands for residual solvent resonance).