Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2014 ## **SUPPORTING INFORMATION** **Table S1.** Characteristics of the Ludox® TM-50 aqueous colloidal silica sol. | [SiO ₂]
(wt. % / g L ⁻¹) ^a | $D_n (\text{nm}) / D_w / D_n^{b}$ | рН | ρ _{□□□□□} (g
cm ⁻³) | Specific surface area (m ² g ⁻¹) ^c | |--|-----------------------------------|-------------|---|--| | 50 / 550 | 27 / 1.07 | 9 ± 0.1 | 2.3 ^d | 118 | ^aDetermined by gravimetric analysis. ^bNumber-average diameter and polydispersity index determined by TEM by counting more than 200 particles. The weight average diameter, D_w, was calculated from: $$D_{w} = \frac{\sum n_{i} D_{i}^{4}}{\sum n_{i} D_{i}^{3}}, \text{ where } n_{i} \text{ designates the number of particles of diameter } D_{i}. \text{ } ^{c}\text{Supplier data record.}$$ $$\rho_{silica} = \frac{W_{silica}}{\frac{1}{Q_{out}} - W_{water}}$$ $[\]rho_{silica} = \frac{W_{silica}}{\frac{1}{\rho_{Ludox}} - W_{water}}$ d Determined according to: where W_{silica} and W_{water} are weight fractions of silica and water, respectively ($W_{silica} = W_{water} = 0.5$) and ρ_{Ludox} is the density of the Ludox suspension as given by the manufacturer ($\rho_{Ludox} = 1.4 \text{ g cm}^{-3}$) Figure S1. TEM image of the colloidal silica sol used in this study. Scale bar: 100 nm. **Figure S2.** DSC thermogram of latex particles obtained in run 2. [Sty] = 12.8 g L⁻¹, [BuA] = 3.3 g L^{-1} , [DVB] = 0.2 g L^{-1} , [SDS] = 0.5 g L^{-1} , [SSNa] = 0.60 g L^{-1} and [KPS] = 0.70 g L^{-1} . **Figure S3.** TEM image of the latex particles obtained when: (a) $[Sty] = 10.3 \text{ g L}^{-1}$, $[BuA] = 3.3 \text{ g L}^{-1}$, $[DVB] = 3 \text{ g L}^{-1}$, $[SDS] = 0.5 \text{ g L}^{-1}$, $[SSNa] = 0.60 \text{ g L}^{-1}$ and $[KPS] = 0.70 \text{ g L}^{-1}$ (run 1). (b) $[Sty] = 12.8 \text{ g L}^{-1}$, $[BuA] = 3.3 \text{ g L}^{-1}$, $[DVB] = 0.2 \text{ g L}^{-1}$, $[SDS] = 0.5 \text{ g L}^{-1}$, $[SSNa] = 0.60 \text{ g L}^{-1}$ and $[KPS] = 0.70 \text{ g L}^{-1}$ (run 2). Scale bar: 100 nm. **Figure S4.** TEM image of the latex particles obtained when [Sty] = 43 g L⁻¹, [BuA] = 11 g L⁻¹, [DVB] = 0.5 g L⁻¹, [SDS] = 1.5 g L⁻¹ and [KPS] = 0.25 g L⁻¹ (run 13, Table 2). Scale bar: 100 nm. **Figure S5.** TEM images of Ludox® TM-50 silica/P(Sty-*co*-BuA) biphasic particles obtained for [SDS] = 1 g L⁻¹. [Sty] = 43 g L⁻¹, [BuA] = 11 g L⁻¹, [DVB] = 0.5 g L⁻¹, [γ -MPS] = 1.5 μ mol m⁻², [KPS] = 0.25 g L⁻¹ and [SiO₂] = 13 g L⁻¹ (run 21, Table 2). Scale bar: 100 nm