Electronic Supplementary Information

Intramolecular oxidative cyclization of alkenes by rhodium/cobalt porphyrins in water

Lin Yun, Zikuan Wang, Xuefeng Fu*Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials Chemistryand Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing,100871, China.

Table of Contents

Experimental P2
Table 1. Formation of heterocyclic unsaturated products P3
Synthesis of starting materials P4
Characterization of β-hetero-functionalized alkyl rhodium/cobalt porphyrins P6
Characterization of cyclization product P9
Explanation of alkyl cobalt porphyrins P10
References P11
Representative ${ }^{1} \mathrm{H}$ NMR spectra of alkyl rhodium/cobalt porphyrins P12

EXPERIMENTAL

General

$\mathrm{D}_{2} \mathrm{O}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{CDCl}_{3}$ were purchased from Cambridge Isotope Laboratory Inc.; tetra p-sulfonatophenyl porphyrin from Tokyo Chemical Industry (TCI); $\left(\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right)_{2}$ from Stream Chemical Inc.; and all other chemicals were purchased from Aldrich or Alfa Aesar unless otherwise noted and used as received. Mass spectra were taken on a Bruker Apex IV FTMS. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AV-400 spectrometer. The chemical shifts were referenced to 3-trimethylsilyl-1-propanesulfonic acid sodium salt (DSS). GC-MS results were obtained by the Agilent $7980 \mathrm{~A} / 5975 \mathrm{C}$ GC/MSD system equipped with the DB-17MS ($30 \mathrm{~m}, 0.25 \mathrm{~mm}, 0.25 \mu \mathrm{~m}$) column. All reagents and solvents were of commercial quality and distilled or dried when necessary using standard procedures.

Preparation of $\boldsymbol{N a}_{3} /(\boldsymbol{T S P P}) \boldsymbol{M}^{I I I}\left(\boldsymbol{H}_{2} \boldsymbol{O}\right)_{2} / \boldsymbol{(} \boldsymbol{M}=\boldsymbol{R} \boldsymbol{h}$, and $\left.\boldsymbol{C o}\right): \mathrm{Na}_{3}\left[(\mathrm{TSPP}) \mathrm{M}^{\mathrm{III}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ was synthesized by literature methods of Ashley ${ }^{[1]}$. The equilibrium distribution of $\left[(T S P P) R{ }^{[1 I}\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}\right]^{-3}$, $\left[(T S P P) \mathrm{Rh}^{\text {III }}\left(\mathrm{D}_{2} \mathrm{O}\right)(\mathrm{OD})\right]^{-4}$ and $\left[(\mathrm{TSPP}) \mathrm{Rh}^{\text {III }}(\mathrm{OD})_{2}\right]^{-5}$ were reported in the previously published paper. ${ }^{[2]}$ $\mathrm{Na}_{3}\left[(\mathrm{TSPP}) \mathrm{Rh}^{\mathrm{III}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]:{ }^{1} \mathrm{HNMR}\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 9.15(\mathrm{~s}, 8 \mathrm{H}$, pyrrole), $8.44(\mathrm{~d}, 8 \mathrm{H}, \mathrm{o}-$ phenyl, $\mathrm{J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}$), 8.25 (d, m-phenyl, $\left.\mathrm{J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}\right) . \mathrm{Na}_{3}\left[(\mathrm{TSPP}) \mathrm{Co}^{\mathrm{III}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]:{ }^{1} \mathrm{HNMR}\left(\mathrm{D}_{2} \mathrm{O}, 400\right.$ $\mathrm{MHz}) \delta(\mathrm{ppm}): 9.37\left(\mathrm{~s}, 8 \mathrm{H}\right.$, pyrrole), $8.41\left(\mathrm{~d}, 8 \mathrm{H}\right.$, o-phenyl, $\left.\mathrm{J}_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}\right), 8.22\left(\mathrm{~d}, \mathrm{~m}-\mathrm{phenyl}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=8\right.$ Hz).

Typical procedure for preparation of β-hetero-functionalized alkyl rhodium porphyrins: $\mathrm{Na}_{3}\left[(\mathrm{TSPP}) \mathrm{Rh}^{\text {III }}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](1.1 \mathrm{mg}, 0.001 \mathrm{mmol})$ and alkenes (10 equiv) were dissolved in 0.3 mL borate buffer $\mathrm{D}_{2} \mathrm{O}$ solution $(\mathrm{pH}=8.0)$ in vacuum adapted NMR tubes at room temperature, respectively. The progress of the reaction was monitored by ${ }^{1} \mathrm{H}$ NMR. After completion, the mixture was transformed to a 10 mL round-bottomed flask and the solvent was removed using the Schlenk line. The resulting solid was washed by ethyl ether and CHCl_{3} to removed excess substrate.

Typical procedure for preparation of β-hetero-functionalized alkyl cobalt porphyrins: $\mathrm{Na}_{3}\left[(\mathrm{TSPP}) \mathrm{Co}^{\mathrm{III}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](1.1 \mathrm{mg}, 0.001 \mathrm{mmol})$ and alkenes (10 equiv) were dissolved in 0.3 mL borate
buffer $\mathrm{D}_{2} \mathrm{O}$ solution $(\mathrm{pH}=9.0)$ in vacuum adapted NMR tubes at room temperature, respectively. The progress of the reaction was monitored by ${ }^{1} \mathrm{H}$ NMR. After completion, the mixture was transformed to a 10 mL round-bottomed flask wrapped with aluminum foil and the solvent was removed using the Schlenk line. The resulting solid was direct sent to ${ }^{1} \mathrm{H}$ NMR study.

Typical procedure for production of 2-methylbenzofurans: purified β-phenoxyalkyl rhodium/cobalt porphyrin complexes were dissolved in $0.3 \mathrm{~mL} \mathrm{D}_{2} \mathrm{O}$ in vacuum adapted NMR tubes. After three freeze-thaw cycles, the solution was charged with N_{2} in the glove box, heated at 333 K . The elimination process was followed by ${ }^{1} \mathrm{H}$ NMR. After complete conversion of the rhodium alkyl complexes, 0.3 mL CDCl_{3} was added to extract the formed product. GC-MS was also used to identify the 2methylbenzofurans.

Table S1 Formation of heterocyclic unsaturated products ${ }^{\text {a }}$
Entry

Synthesis

2-Allylcyclohexanol. ${ }^{[3]}$ A 3-neck 100 mL round-bottom flask fitted with a mechanical stirrer, 25 mL addition funnel was charged with allyl magnesium bromide (1.0 M in $\mathrm{Et}_{2} \mathrm{O}, 20 \mathrm{~mL}, 20 \mathrm{mmol}, 3$ equiv) and $16 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$. Cyclohexene oxide ($0.67 \mathrm{~mL}, 6.6 \mathrm{mmol}, 1.0$ equiv) was added dropwise. 30 min after addition, the mixture was refluxed for 3 hours which was then quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(30 \mathrm{~mL})$ was carefully added. The solution was transferred to a separatory funnel and the organic layer was collected. The aqueous layer was extracted by $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL} \times 3)$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash column chromatography to give a pale yellow oil (42% yeild). The spectral data match that of the literature compound.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.85(\mathrm{ddt}, 1 \mathrm{H}), 5.08(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H})$, 2.01-1.94 (m, 2H), $1.79(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.18(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 137.60,116.08,74.71,45.03,35.70,30.49,29.80,25.63,25.02$.

2-Methylhex-5-en-2-ol. ${ }^{[3]}$ A 3-neck 50 mL round-bottom flask fitted with a mechanical stirrer, 25 mL addition funnel was charged with methyl magnesium bromide ($3.0 \mathrm{M} \mathrm{in}_{\mathrm{Et}}^{2} \mathrm{O}, 7.0 \mathrm{~mL}, 21 \mathrm{mmol}, 1.2$ equiv) and $10 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O} .5$-hexen-2-one ($2.0 \mathrm{~mL}, 17 \mathrm{mmol}, 1.0$ equiv) was added dropwise. One hour after addition was complete, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (6 mL) was carefully added. The solution was transferred to a separatory funnel and the organic layer was collected. The aqueous layer was extracted by $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL} \times 3)$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give a pale yellow oil as the pure product (56% yeild). The spectral data match that of the literature compound. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.75(\mathrm{ddt}, 1 \mathrm{H}), 4.94(\mathrm{ddd}, 1 \mathrm{H}), 4.85(\mathrm{ddd}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H})$, $1.48(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.98,114.13,70.68,42.76,29.06,28.70$.

2-Allylaniline. ${ }^{[4]}$ In a $100-\mathrm{mL}$ seal-tube, a cold solution (at $-78{ }^{\circ} \mathrm{C}$) of N -allylaniline ($1.33 \mathrm{~g}, 10.0$ $\mathrm{mmol})$ in m-xylene (20 mL) was added boron trifluoride etherate $(1.5 \mathrm{~mL}, 12.0 \mathrm{mmol})$ under an argon atmosphere. After 5 min , the solution was warmed to room temperature and then heated to $180{ }^{\circ} \mathrm{C}$. After 17 h , the reaction was cooled down to room temperature and quenched with 2 M NaOH solution $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The organic layer was separated and the aqueous layer was extracted with diethyl ether ($15 \mathrm{~mL} \times 3$). The combined organic layers were filtered and concentrated in vacuo. The residue was purified by flash column chromatography to give the product as a yellow oil (30% yeild). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.06-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{t}, 1 \mathrm{H}), 6.67(\mathrm{~d}, 1 \mathrm{H}), 6.01-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.13-$ $5.06(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{bs}, 2 \mathrm{H}), 3.30(\mathrm{~d}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.92,136.08,130.29$, $127.66,124.15,119.01,116.21,115.95,36.60$.

3-Phenylpent-4-en-1-ol. ${ }^{[5]}$ A mixture of cynnamyl alcohol ($18.7 \mathrm{mmol}, 2.5 \mathrm{~g}$), triethyl orthoacetate (107.4 mmol, 14 mL) and catalytic amount of propionic acid was heated at $150{ }^{\circ} \mathrm{C}$ overnight. The resulting mixture was concentrated and purified through silica gel column chromatography. The ester was then dissolved in THF (20 mL) and treated slowly with lithum aluminum hydride ($12.5 \mathrm{mmol}, 0.5$ g) at $0^{\circ} \mathrm{C}$. The mixture was then warmed to room temperature and stired for 4 hours. The resulting mixture was poured into $1 \mathrm{M} \mathrm{NaOH}(\mathrm{aq}, 50 \mathrm{~mL})$ and ice with vigorous stirring to give white suspension. After filtration, the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times 3)$. The combined organic layers were washed with $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq}, 30 \mathrm{~mL} \times 2)$, brine $(30 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concertation in vacuo, the residue was purified through silica gel column chromatography to give the final product (47% yeild $) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.17(\mathrm{~m}, 5 \mathrm{H}), 5.93(\mathrm{~m}, 1 \mathrm{H})$, $5.06(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{q}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.78,141.89$, 128.64, 127.66, 126.45, 114.45, 60.88, 46.30, 37.99, 36.60.

3-Phenyl-4-pentenoic acid. ${ }^{[5]}$ The complex was prepared according to literature procedures $[2] .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 10.7(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.29-7.11(\mathrm{~m}, 5 \mathrm{H}), 5.85-6.02(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.98(\mathrm{~m}, 2 \mathrm{H})$, 128.74, 127.62, 126.89, 115.11, 45.28, 40.05.

2-(iodomethyl)octahydrobenzofuran. ${ }^{[6]}$ 2-allylphenol $(1.0 \mathrm{mmol})$ and iodine $(1.2 \mathrm{mmol})$ was added in ethanol/water ($20 \mathrm{~mL}, 1 / 9$). The mixture was stirred at $50^{\circ} \mathrm{C}$ for 12 h . After completion, the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with water. The combined organic fraction was washed with aqueous sodium thiosulphate, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to generate the crude product, which was chromatographed to afford the product as yellow powder (81% yield).

Formation of $\boldsymbol{\beta}$-hetero-functionalized alkyl rhodium porphyrins

Reaction of (TSPP)Rh ${ }^{\text {III }}$ with 2-allylphenol. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.56$ (8 H , pyrrole), 8.20$7.97(16 \mathrm{H}$, phenyl), 6.16-5.87(m, 3H), $5.24(\mathrm{~m}, 1 \mathrm{H}),-0.65(\mathrm{~d}, 2 \mathrm{H}),-1.75(\mathrm{~d}, 1 \mathrm{H}),-2.40(\mathrm{~m}, 1 \mathrm{H}),-5.67$ (m, 1H), -5.81 (m, 1H). MS (ESI): m/z: 290.99903, calcd. 291.99900.

Reaction of (TSPP)Rh ${ }^{\text {III }}$ with 2-allyl-6-methylphenol. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.70(8 \mathrm{H}$, pyrrole), 8.12-8.01 (16H, phenyl), 6.17-6.03 (m, 3H), $5.24(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}),-0.52(\mathrm{~d}, 2 \mathrm{H}),-1.49(\mathrm{~d}$, $1 \mathrm{H}),-2.51(\mathrm{~m}, 1 \mathrm{H}),-5.57(\mathrm{~m}, 1 \mathrm{H}),-5.74(\mathrm{~m}, 1 \mathrm{H})$. MS (ESI): m/z: 400.33510, calcd. 400.33399.

Reaction of (TSPP)Rh ${ }^{\text {III }}$ with 2-allyl-6-methoxyphenol. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.70(8 \mathrm{H}$, pyrrole), 8.12-8.01 (16H, phenyl), $8.68(\mathrm{~m}, 2 \mathrm{H}), 5.85(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}),-0.49(\mathrm{~d}, 2 \mathrm{H}),-1.50(\mathrm{~d}, 1 \mathrm{H})$, -2.51 (m, 1H), -5.63 (m, 1H), -5.76 (m, 1H). MS (ESI): m/z: 405.66726, calcd. 405.66563.
 $8.75(8 \mathrm{H}$, pyrrole $), 8.26-8.24(16 \mathrm{H}$, phenyl), $7.15(\mathrm{dd}, 1 \mathrm{H}), 5.56(\mathrm{~d}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}),-0.24(\mathrm{q}, 1 \mathrm{H}),-$ $1.40(\mathrm{~m}, 1 \mathrm{H}),-2.10(\mathrm{dd}, 1 \mathrm{H}),-5.52(\mathrm{~m}, 1 \mathrm{H}),-5.71(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}: 409.66760$, calcd. 409.66563.

Reaction of (TSPP)Rh ${ }^{\text {III }}$ with 3-allyl-2-hydroxybenzaldehyde. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.68$ $(8 \mathrm{H}$, pyrrole $), 8.11-7.79(16 \mathrm{H}$, phenyl $), 6.73(\mathrm{~d}, 2 \mathrm{H}), 6.55(\mathrm{~d}, 1 \mathrm{H}), 6.26(\mathrm{t}, 3 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}),-0.46(\mathrm{dd}$, 2H), -1.31 (m, 1H), -2.51 (m, 1H), -5.55 (m, 1H), -5.77 (m, 1H). MS (ESI): m/z: 406.33963, calcd. 406.33751 .

Reaction of (TSPP)Rh ${ }^{\text {III }}$ with 2-methylhex-5-en-2-ol. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 8.62$ (8 H , pyrrole), 8.39-8.12 (16H, phenyl), $0.15(\mathrm{~m}, 1 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}),-0.13(\mathrm{~m}, 1 \mathrm{H}),-0.18(\mathrm{~s}, 3 \mathrm{H}),-1.91(\mathrm{~m}, 1 \mathrm{H}),-2.62$ $(\mathrm{m}, 1 \mathrm{H}),-3.23(\mathrm{~m}, 1 \mathrm{H}),-5.82(\mathrm{~m}, 1 \mathrm{H}),-5.91(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z: 286.00632$, calcd. 286.00682.

Reaction of (TSPP)Rh ${ }^{\text {III }}$ with 2-allylcyclohexanol. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 8.62$ (8 H , pyrrole), 8.39-8.12 (16H, phenyl), $0.39(\mathrm{~m}, 1 \mathrm{H}),-0.09(\mathrm{~m}, 1 \mathrm{H}),-1.03(\mathrm{~m}, 1 \mathrm{H}),-1.96(\mathrm{~m}, 1 \mathrm{H}),-2.35(\mathrm{~m}, 1 \mathrm{H}),-$ $3.65(\mathrm{~m}, 1 \mathrm{H}),-5.68(\mathrm{~m}, 1 \mathrm{H}),-5.83(\mathrm{~m}, 1 \mathrm{H})$.

Reaction of (TSPP)Rh ${ }^{\text {III }}$ with 3-phenylpent-4-en-1-ol. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.36(8 \mathrm{H}$, pyrrole), 8.17-8.05 (16H, phenyl), $6.83(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{~m}, 2 \mathrm{H}), 5.17(\mathrm{~m}, 2 \mathrm{H}),-0.39(\mathrm{~m}, 3 \mathrm{H}),-0.24(\mathrm{~m}$, $1 \mathrm{H}),-0.91(\mathrm{~m}, 1 \mathrm{H}),-3.44(\mathrm{~m}, 1 \mathrm{H}),-6.02(\mathrm{~m}, 1 \mathrm{H}),-6.12(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z: 298.00632$, calcd. 298.00682.

Reaction of (TSPP)Rh ${ }^{\text {III }}$ with 3-phenylpent-4-enoic acid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 8.60(8 \mathrm{H}$, pyrrole), 8.31-8.00 $(16 \mathrm{H}$, phenyl), $6.86(1 \mathrm{H}), 6.68(2 \mathrm{H}), 5.05(2 \mathrm{H}), 1.04(1 \mathrm{H}),-0.58(1 \mathrm{H}),-2.39(1 \mathrm{H}),-$ $5.82(1 \mathrm{H}),-5.98(1 \mathrm{H})$. MS (ESI): m/z: 301.50235, calcd. 301.50164.

Reaction of (TSPP)Rh ${ }^{\text {III }}$ with 2-allylaniline. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.53$ (8 H , pyrrole), 8.17$8.04(16 \mathrm{H}$, phenyl), $6.74(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{~m}, 2 \mathrm{H}), 0.07(\mathrm{~m}, 1 \mathrm{H}),-1.36(\mathrm{~m}, 1 \mathrm{H}),-2.64(\mathrm{~m}$, $1 \mathrm{H}),-5.87(\mathrm{~m}, 1 \mathrm{H}),-5.89(\mathrm{~m}, 1 \mathrm{H})$.

Reaction of (TSPP)Rh ${ }^{\text {III }}$ with pent-4-en-1-ol in methanol. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.78(8 \mathrm{H}$, pyrrole), 8.39-8.12 (16H, phenyl), $2.02(\mathrm{~m}, 2 \mathrm{H}), 0.37(\mathrm{~m}, 1 \mathrm{H}), 0.15(\mathrm{~m}, 1 \mathrm{H}),-1.71(\mathrm{~m}, 1 \mathrm{H}),-1.74(\mathrm{~m}$, $1 \mathrm{H}),-2.29(\mathrm{~m}, 1 \mathrm{H}),-3.25(\mathrm{dd}, 1 \mathrm{H}),-5.58(\mathrm{~m}, 1 \mathrm{H}),-5.81(\mathrm{~m}, 1 \mathrm{H})$.

Reaction of (TSPP)Rh ${ }^{\text {III }}$ with hex-5-en-1-ol in methanol. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.67(8 \mathrm{H}$, pyrrole), 8.26-8.18 (16H, phenyl), $1.46(\mathrm{~m}, 2 \mathrm{H}), 0.47(\mathrm{~m}, 1 \mathrm{H}), 0.11(\mathrm{~m}, 1 \mathrm{H}),-0.19(\mathrm{~m}, 1 \mathrm{H}),-1.89(\mathrm{~m}$, $1 \mathrm{H}),-2.48(\mathrm{~m}, 1 \mathrm{H}),-3.37(\mathrm{~m}, 1 \mathrm{H}),-5.63(\mathrm{~m}, 1 \mathrm{H}),-5.86(\mathrm{~m}, 1 \mathrm{H})$.

Reaction of (TSPP)Co ${ }^{\text {III }}$ with 2-allylphenol. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.23$ (8 H , pyrrole), $7.82-$ $7.65(16 \mathrm{H}$, phenyl), 6.33-6.16 $(\mathrm{m}, 3 \mathrm{H}), 5.48(\mathrm{~m}, 1 \mathrm{H}),-1.12(\mathrm{~m}, 1 \mathrm{H}),-2.48(\mathrm{~m}, 1 \mathrm{H}),-2.82(\mathrm{~m}, 1 \mathrm{H}),-$ $5.00(\mathrm{~m}, 1 \mathrm{H}),-5.17(\mathrm{~m}, 1 \mathrm{H})$.

Reaction of (TSPP)Co ${ }^{\text {III }}$ with 2-allyl-6-methylphenol. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.83(8 \mathrm{H}$, pyrrole), 8.23-7.85 (16H, phenyl), $6.63(\mathrm{br}, 1 \mathrm{H}), 5.95(\mathrm{br}, 1 \mathrm{H}), 5.33(\mathrm{br}, 1 \mathrm{H}),-0.42(\mathrm{~m}, 1 \mathrm{H}),-1.42(\mathrm{~m}$, $1 \mathrm{H}),-2.19(\mathrm{~m}, 1 \mathrm{H}),-4.01(\mathrm{~m}, 1 \mathrm{H}),-4.46(\mathrm{~m}, 1 \mathrm{H})$.

Reaction of (TSPP)Rh ${ }^{\text {III }}$ with 3-allyl-2-hydroxybenzaldehyde. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.84(8 \mathrm{H}$, pyrrole), 8.21-7.85 (16H, phenyl), $6.62(\mathrm{br}, 1 \mathrm{H}), 5.92(\mathrm{br}, 1 \mathrm{H}), 5.41(\mathrm{br}, 1 \mathrm{H}),-0.34(\mathrm{~m}, 1 \mathrm{H}),-1.23(\mathrm{~m}$, $1 \mathrm{H}),-2.16(\mathrm{~m}, 1 \mathrm{H}),-4.03(\mathrm{~m}, 1 \mathrm{H}),-4.53(\mathrm{~m}, 1 \mathrm{H})$.

Reaction of (TSPP)Rh ${ }^{\text {III }}$ with 1-(2-allyl-3-hydroxyphenyl)ethanone. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta$ $8.83(8 \mathrm{H}$, pyrrole $), 8.23-7.73(16 \mathrm{H}$, phenyl), $6.63(\mathrm{br}, 2 \mathrm{H}), 5.83(\mathrm{br}, 1 \mathrm{H}),-0.24(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}),-$ $1.39(\mathrm{~m}, 1 \mathrm{H}),-1.94(\mathrm{~m}, 1 \mathrm{H}),-4.13(\mathrm{~m}, 1 \mathrm{H}),-4.49(\mathrm{~m}, 1 \mathrm{H})$.

Reaction of (TSPP)Co ${ }^{\text {III }}$ with 2-methylhex-5-en-2-ol. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 8.62$ (8 H , pyrrole), 7.82-7.65 (16H, phenyl), $0.03(\mathrm{~m}, 1 \mathrm{H}),-0.11(\mathrm{~s}, 3 \mathrm{H}),-0.21(\mathrm{~m}, 1 \mathrm{H}),-0.28(\mathrm{~s}, 3 \mathrm{H}),-2.21(\mathrm{~m}, 1 \mathrm{H}),-2.87$ (m, 1H), -3.42(m, 1H), -4.66(m, 1H), -5.01 (m, 1H).

Reaction of (TSPP)Rh ${ }^{\text {III }}$ with 3-Phenyl-4-pentenoic acid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.16(\mathrm{~b}, 8 \mathrm{H}$, pyrrole), $8.05(\mathrm{~b}, 16 \mathrm{H}$, phenyl), $6.73(\mathrm{t}, 1 \mathrm{H}), 6.47(\mathrm{t}, 2 \mathrm{H}), 2.17(1 \mathrm{H}), 0.86(2 \mathrm{H}), 0.63(1 \mathrm{H}),-0.64(1 \mathrm{H}),-$ $3.39(1 \mathrm{H}),-4.87(1 \mathrm{H}),-5.28(1 \mathrm{H})$.

$\boldsymbol{\beta}$-H elimination product of Table 1

All BHE products of rhodium/cobalt alkyl complexes were carefully characterized by GC-MS.

2-methylbenzofuran ${ }^{[7]}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~d}, 1 \mathrm{H}), 7.35(\mathrm{~d}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}), 6.42$ (1H), 2.42 (m, 3H).

9 $(\mathrm{s}, 1 \mathrm{H}), 6.42(1 \mathrm{H}), 2.42(\mathrm{~m}, 6 \mathrm{H})$.

2-methylbenzofuran-7-carbaldehyde ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{~d}, 1 \mathrm{H}), 7.24(\mathrm{~d}, 1 \mathrm{H}), 7.16$ (t, 1H), $6.46(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~m}, 3 \mathrm{H})$.

7-methoxy-2-methylbenzofuran ${ }^{[8]}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.10(\mathrm{~d}, 1 \mathrm{H}), 7.02(\mathrm{t}, 1 \mathrm{H}), 6.69(\mathrm{~d}$, $1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$.

Explanation of cobalt alkyl complexes

Elimination Charged with air or oxygen, (TSPP)Co ${ }^{\text {III }}$ mediated oxidative cyclization of 2-allylphenol derivatives gave cyclization product and mixture of (TSPP) $\mathrm{Co}^{\mathrm{II}}$ and (TSPP) $\mathrm{Co}^{\mathrm{III}}$ (Fig S1) :

Figure S1 Elimination of Cobalt alkyls in air. Both (TSPP)Co(III) and (TSPP)Co(II) was observed.

ESI-MS results Due to weak Co-C bond, both ESI-MS and MALDI-TOF-MS failed to gave MS characterization of cobalt alkyl complexes. The spectra all showed m / z for (TSPP)Co shown in Fig. S2.

Figure S2 ESI-MS results for cobalt alkyl species. All reported cobalt alkyls in the manuscript gave almost the same spectra. The two highest m / z peaks correspond to (TSPP)Co with loss of $4 \mathrm{Na}^{+}$and $3 \mathrm{Na}^{+}$.

Reference

[1] (a) K. R. Ashley, S. B. Shyu and J. G. Leipoldt, Inorg. Chem. 1980, 19, 1613. (b) K. R. Ashley, J. G. Leipoldt, Inorg. Chem. 1981, 20, 2326.
[2] L. A. Drio, L. S. Quek, J. G. Taylor, K. H. Kuok, Tetrahedron 2009, 65,1003.
[3] N. Stefano, W. Jerome, Org. Lett. 2011, 13, 6324.
[4] H. Yamamoto, E. Ho, K. Namba, H. Imagawa, M. Nishizawa, Chem. -Eur. J. 2010, 16, 11271.
[5] G. Zhang, C. Li, Y. Wang, L. Zhang, J. Am. Chem. Soc. 2010, 132, 1474.
[6] M. Fousteris, C. Chevrin, J. Le Bras, J. Muzart, Green Chem. 2006, 8. 522.
[7] A. I. Roshchin, S. M. Kel'chevski, N. A. Bumagin, J. Organomet. Chem. 1998, 560, 163.
[8] A. Alemagna, C. Baldoli, P. Del Buttero, E. Licandro, S. Maiorana, J. Chem. Soc., Chem. Commun. 1985, 417.

Representative ${ }^{1} \mathbf{H}$ NMR spctra :

