# **Electronic Supplementary Information**

# Oligostilbenes from Vatica mangachapoi with Xanthine Oxidase and

# Acetylcholinesterase Inhibitory Activities

Yan Hua Qin, Jie Zhang, Jiang Tao Cui, Zhi Kai Guo, Nan Jiang, Ren Xiang Tan and Hui Ming Ge

## **Table of Contents**

Figure S1 <sup>1</sup>H-NMR spectrum of compound 1 (DMSO- $d_6$ ) Figure S2  $^{13}$ C-NMR spectrum of compound **1** (DMSO- $d_6$ ) Figure S3 HMQC spectrum of compound 1 (DMSO- $d_6$ ) Figure S4 HMBC spectrum of compound 1 (DMSO- $d_6$ ) Figure S5  $^{1}$ H- $^{1}$ H COSY spectrum of compound **1** (DMSO- $d_{6}$ ) Figure S6 NOESY spectrum of compound 1 ((DMSO- $d_6$ ) Figure S7 HREIMS spectrum of compound **1** (positive mode) Figure S8 FT-IR spectrum of compound 1 (KBr) Figure S9 The theoretically predicted UV spectrum for 1 Figure S10 UV spectrum of compound 1 (CH<sub>3</sub>OH) Figure S11 <sup>1</sup>H-NMR spectrum of compound 2 (DMSO- $d_6$ ) Figure S12  $^{13}$ C-NMR spectrum of compound 2 (DMSO- $d_6$ ) Figure S13 HMQC spectrum of compound 2 (DMSO- $d_6$ ) Figure S14 HMBC spectrum of compound 2 (DMSO- $d_6$ ) Figure S15  $^{1}$ H- $^{1}$ H COSY spectrum of compound 2 (DMSO- $d_{6}$ ) Figure S16 NOESY spectrum of compound 2 ((DMSO- $d_6$ ) Figure S17 HREIMS spectrum of compound 2 (positive mode) Figure S18 FT-IR spectrum of compound 2 (KBr) Figure S19 UV spectrum of compound 2 (CH<sub>3</sub>OH) Figure S20 <sup>1</sup>H-NMR spectrum of compound **3** (acetone- $d_6$ ) Figure S21 <sup>13</sup>C-NMR spectrum of compound **3** (acetone  $-d_6$ ) Figure S22 HSQC spectrum of compound **3** (acetone  $-d_6$ ) Figure S23 HMBC spectrum of compound **3** (acetone  $-d_6$ ) Figure S24 <sup>1</sup>H-<sup>1</sup>H COSY spectrum of compound **3** (acetone  $-d_6$ ) Figure S25 ROESY spectrum of compound **3** (acetone  $-d_6$ ) Figure S26 HREIMS spectrum of compound **3** (positive mode)

Figure S27 FT-IR spectrum of compound 3 (KBr)

Figure S28 UV spectrum of compound 3 (CH<sub>3</sub>OH)

Table S1 The optimized structural information for 1 within polarizable continuum model

Table S2 TDDFT results for the optimized conformer of (7bS)-1 (200nm $<\lambda<400$ nm)

Table S3 The optimized structural information for 2 within polarizable continuum model

Table S4 TDDFT results for the optimized conformer of (7aR, 8aR, 7bR)-2 (200nm< $\lambda$ <400nm)

Table S5 The optimized structural information for **3** within polarizable continuum model

Table S6 TDDFT results for the optimized conformer of (7aR, 8aR)-3 (200nm< $\lambda$ <400nm)



Figure S1<sup>1</sup>H-NMR spectrum of compound **1** (DMSO-*d*<sub>6</sub>)



Figure S2 <sup>13</sup>C-NMR spectrum of compound **1** (DMSO-*d*<sub>6</sub>)



Figure S3 HMQC spectrum of compound 1 (DMSO-*d*<sub>6</sub>)



Figure S4 HMBC spectrum of compound **1** (DMSO-*d*<sub>6</sub>)

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of ChemStrppPerhentary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2011



Figure S5 <sup>1</sup>H-<sup>1</sup>H COSY spectrum of compound **1** (DMSO-*d*<sub>6</sub>)



Figure S6 NOESY spectrum of compound **1** (DMSO-*d*<sub>6</sub>)

## **Qualitative Analysis Report**



--- End Of Report ---

Agilent Technologies

Page 1 of 1

Printed at: 8:29 AM on:11/4/2008

Figure S7 HRESIMS spectrum of compound 1 (positive mode)



Figure S8 FT-IR spectrum of compound 1 (KBr)



Figure S9 The theoretically predicted UV spectrum for **1**. The calculations are carried out at B3LYP/6–31G(d) level within the polarizable continuum model (CH<sub>3</sub>OH solvent: dielectric constant  $\varepsilon$  = 32.63).

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of ChemSuppRethentary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2011



| No. | WL<br>(nm) | Peak<br>(Abs) | No. | WL<br>(nm) | Valley<br>(Abs) |
|-----|------------|---------------|-----|------------|-----------------|
| 1   | 673.50     | 0.004         | 1   | 658.50     | 0.003           |
| 2   | 643.50     | 0.004         | 2   | 642.50     | 0.003           |
| 3   | 636.50     | 0.004         | 3   | 628.50     | 0.003           |
| 4   | 616.00     | 0.004         | 4   | 614.00     | 0.003           |
| 5   | 598.50     | 0.004         | 5   | 592.00     | 0.003           |
| 6   | 589.50     | 0.004         | 6   | 569.50     | 0.003           |
| 7   | 556.00     | 0.004         | 7   | 525,50     | 0.003           |
| 8   | 277.50     | 0.137         | 8   | 264.00     | 0.121           |
| 9   | 206.00     | 1.096         |     |            |                 |

Figure S10 UV spectrum of compound **1** (CH<sub>3</sub>OH)





Figure S11 <sup>1</sup>H-NMR spectrum of compound **2** (DMSO-*d*<sub>6</sub>)



Figure S12<sup>13</sup>C-NMR spectrum of compound **2** (DMSO-*d*<sub>6</sub>)



Figure S13 HMQC spectrum of compound 2 (DMSO-*d*<sub>6</sub>)



Figure S14 HMBC spectrum of compound 2 (DMSO-*d*<sub>6</sub>)



Figure S15 <sup>1</sup>H-<sup>1</sup>H COSY spectrum of compound **2** (DMSO-*d*<sub>6</sub>)



Figure S16 NOESY spectrum of compound 2 (DMSO-*d*<sub>6</sub>)

r

## **Qualitative Analysis Report**

| Dai<br>Sar<br>Ins<br>Acc<br>IRN<br>Cor        | ta Filename<br>mple Type<br>trument Nam<br>a Method<br>M Calibration<br>mment                                                | ne<br>Status                                                                                                  | B22H-22-9-4.d<br>Sample<br>Instrument 1<br>TEMP2.m<br>Some Ions Missed                            | Sample Name<br>Position<br>User Name<br>Acquired Time<br>DA Method                                                                          | B22H-22-9-4<br>P1-D5<br>5/5/2010 6:48:07 PM<br>Default.m |                      |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------|
| Us                                            | er Spectra                                                                                                                   |                                                                                                               |                                                                                                   | Francisco Valtana                                                                                                                           |                                                          | Tonization Mode      |
| Peak                                          | ctrum Source<br>(1) in "+ TIC Sc                                                                                             | an"                                                                                                           |                                                                                                   | 170                                                                                                                                         | Collision Energy<br>0                                    | Esi                  |
| Pec<br>m/<br>1733<br>485<br>486<br>507<br>508 | 10 4 +ESI Se<br>3 -<br>2.5 2<br>1.5 1<br>1.5 1<br>0.5 173.08 0<br>200<br>ak List<br>z z z<br>1.629 1<br>1.1049 1<br>1.1086 1 | can (1.026<br>50<br>(M<br>29<br>29<br>29<br>20<br>400<br>887<br>4303<br>3876<br>1382<br>4303<br>33319<br>8317 | 600 800 10<br>600 800 10<br>Formula<br>C28 H21 08<br>C28 H21 08<br>C28 H20 Na 08<br>C28 H20 Na 08 | Frag=170.0V B22H-22<br>2205<br>1475.3<br>000 1200 1400<br>nts vs. Mass-to-Charge<br>100<br>(M+H)+<br>(M+H)+<br>(M+H)+<br>(M+Na)+<br>(M+Na)+ | 2-9-4.d Subtract<br>346<br>1600 1800 2000<br>(m/2)       | 2200 2400            |
| 955<br>956<br>991                             | .2047 1<br>.2079 1<br>2205 1                                                                                                 | 8060<br>3540<br>30555                                                                                         |                                                                                                   |                                                                                                                                             |                                                          |                      |
| 992                                           | .2241 1                                                                                                                      | 16822                                                                                                         |                                                                                                   |                                                                                                                                             |                                                          |                      |
|                                               | End Of Report                                                                                                                |                                                                                                               |                                                                                                   |                                                                                                                                             |                                                          |                      |
|                                               | Agilent Tech                                                                                                                 | nologies                                                                                                      |                                                                                                   | Page 1 of 1                                                                                                                                 | Printed at: 10                                           | :16 AM on: 8/19/2010 |





Figure S18 FT-IR spectrum of compound 2 (KBr)



Sample

:

| Comment :                                                   |     |
|-------------------------------------------------------------|-----|
| Scan Speed : 1200 nm/min Slit : 2.0 nm PMT Voltage : Auto G | ain |
| Baseline : User 1 Sampling Interval: Auto                   |     |

| No. | WL<br>(nm) | Peak<br>(Abs) | No. | WL<br>(nm) | Valley<br>(Abs) |
|-----|------------|---------------|-----|------------|-----------------|
|     |            |               |     |            |                 |
| 1   | 664.00     | 0.000         | 1   | 642.00     | 0.000           |
| 2   | 624.00     | 0.000         | 2   | 614.00     | 0.000           |
| 3   | 376.00     | 0.318         | 3   | 312.00     | 0.108           |
| 4   | 272.00     | 0.180         | 4   | 260.00     | 0.173           |





Figure S20 <sup>1</sup>H-NMR spectrum of compound **3** (acetone- $d_6$ )



Figure S21 <sup>13</sup>C-NMR spectrum of compound **3** (acetone- $d_6$ )



Figure S22 HSQC spectrum of compound 3 (acetone- $d_6$ )



Figure S23 HMBC spectrum of compound 3 (acetone- $d_6$ )



Figure S24  $^{1}$ H- $^{1}$ H COSY spectrum of compound **3** (acetone- $d_{6}$ )



Figure S25 ROESY spectrum of compound **3** (acetone- $d_6$ )

e

# **Qualitative Analysis Report**

| DA Metho     | Type<br>ant Name<br>rod<br>od | qyh-3;<br>Sampl<br>Instru<br>positiv<br>Defaul | o.d<br>e<br>ment 1<br>e.m<br>t.m |       | Sample<br>Position<br>User Na<br>IRM Cal<br>Comme | Name<br>me<br>ibration Statu<br>nt | 15              | qyh-3<br>P1-D3<br>Steleve | 8         |          |        |                  |
|--------------|-------------------------------|------------------------------------------------|----------------------------------|-------|---------------------------------------------------|------------------------------------|-----------------|---------------------------|-----------|----------|--------|------------------|
| User Sp      | ectra                         |                                                |                                  |       |                                                   |                                    |                 |                           |           |          |        |                  |
| Spectrum     | Source                        | -                                              |                                  |       | Frag                                              | mentor Voltage                     | e               | Collisio                  | on Energy | <i>'</i> | Ioniza | tion Mode<br>Esi |
| reak (1) III | + Scan (                      | 526-0 55                                       | 1 0 684-                         | 0.800 | min 19 s                                          | cans) ovh-3r                       | d Sub           | tract (1)                 | •         |          |        | 201              |
| x10 °        | + ocan (t                     | 0.020-0.00                                     | 467.                             | 11245 | 11141, 10 3                                       | 66113) qy11-op                     |                 |                           |           |          |        |                  |
| 2            |                               |                                                | (M-                              | H)+   |                                                   |                                    |                 |                           |           |          |        |                  |
| 15           |                               |                                                |                                  |       |                                                   |                                    |                 |                           |           |          |        |                  |
| 1.5          |                               |                                                |                                  |       |                                                   |                                    |                 |                           |           |          |        |                  |
| 1-           |                               |                                                |                                  |       |                                                   |                                    |                 |                           |           |          |        |                  |
| 0.5          |                               | 279.1590                                       | 4                                |       |                                                   |                                    | 955 1           | 19869                     |           |          |        |                  |
| o            |                               | ير مان سا جو                                   | ·                                |       |                                                   |                                    | 555.            | 1.                        |           |          |        |                  |
|              | 100 2                         | 00 300                                         | 400                              | 500   | 600<br>Counts                                     | 700 800<br>vs. Mass-to-0           | 900<br>Charge ( | 1000<br>(m/z)             | 1100      | 1200     | 1300   | 1400 15          |
| Peak List    |                               |                                                |                                  |       | -                                                 | 1                                  |                 |                           |           |          |        |                  |
| m/z          | 2241                          | Abund. F                                       | ormula                           | -     | Ion                                               | -                                  |                 |                           |           |          |        |                  |
| 279.1        | 5904                          | 37659                                          |                                  |       |                                                   | 1                                  |                 |                           |           |          |        |                  |
| 467.11       | 1245 1                        | 244253 0                                       | 28H19O7                          |       | (M+H)+                                            | 1                                  |                 |                           |           |          |        |                  |
| 467.37       | 7867                          | 15248                                          |                                  |       |                                                   | 1                                  |                 |                           |           |          |        |                  |
| 468.1        | 1153 1                        | 67709                                          | 28H19O7                          |       | (M+H)+                                            |                                    |                 |                           |           |          |        |                  |
| 489.09       | 9437                          | 22240                                          |                                  |       |                                                   | ]                                  |                 |                           |           |          |        |                  |
| 955.19       | 9869                          | 17157                                          |                                  |       |                                                   |                                    |                 |                           |           |          |        |                  |
|              |                               |                                                |                                  |       |                                                   |                                    |                 |                           |           |          |        |                  |
|              |                               |                                                |                                  |       |                                                   |                                    |                 |                           |           |          |        |                  |

Figure S26 HRESIMS spectrum of compound 3 (positive mode)



Figure S27 FT-IR spectrum of compound 3 (KBr)



| No. | WL<br>(nm) | Peak<br>(Abs) | No. | WL<br>(nm) | Valley<br>(Abs) |
|-----|------------|---------------|-----|------------|-----------------|
|     |            |               |     |            |                 |
| 1   | 662.00     | 0.001         | 1   | 654.00     | 0.001           |
| 2   | 644.00     | 0.001         | 2   | 636.00     | 0.001           |
| 3   | 328.00     | 0.229         | 3   | 318.00     | 0.222           |
| 4   | 268.00     | 0.530         | 4   | 248.00     | 0.457           |

## Figure S28 UV spectrum of compound 3 (CH<sub>3</sub>OH)

> Table S1 The optimized structural information for 1 within polarizable continuum model (CH<sub>3</sub>OH solvent: dielectric constant  $\varepsilon = 32.63$ ) at B3LYP/6-31G(d) level.

| Atoms | Coordinate X | Coordinate Y | Coordinate Z |
|-------|--------------|--------------|--------------|
| С     | 0.535        | -0.801       | 1.099        |
| С     | -0.688       | -0.243       | 1.546        |
| С     | -1.103       | -0.357       | 2.874        |
| С     | -0.313       | -1.054       | 3.790        |
| С     | 0.871        | -1.651       | 3.374        |
| С     | 1.280        | -1.537       | 2.039        |
| Н     | -2.024       | 0.090        | 3.222        |
| Н     | 1.480        | -2.221       | 4.076        |
| С     | -3.313       | -2.085       | -2.505       |
| С     | -1.921       | -2.145       | -2.382       |
| С     | -4.070       | -1.269       | -1.653       |
| С     | -1.230       | -1.390       | -1.421       |
| Н     | -1.381       | -2.795       | -3.067       |
| С     | -3.359       | -0.519       | -0.733       |
| Н     | -5.154       | -1.225       | -1.697       |
| С     | -1.970       | -0.523       | -0.609       |
| С     | -1.595       | 0.442        | 0.507        |
| С     | -3.010       | 0.815        | 1.041        |
| С     | 0.273        | -1.623       | -1.296       |
| Н     | 0.712        | -1.502       | -2.300       |
| С     | 0.977        | -0.624       | -0.359       |
| Н     | 0.590        | 0.349        | -0.672       |
| С     | 2.482        | -0.506       | -0.607       |
| С     | 3.119        | 0.696        | -0.278       |
| С     | 3.254        | -1.512       | -1.207       |
| С     | 4.477        | 0.895        | -0.527       |
| Н     | 2.543        | 1.499        | 0.177        |
| С     | 4.608        | -1.324       | -1.472       |
| Н     | 2.793        | -2.464       | -1.445       |
| С     | 5.226        | -0.118       | -1.130       |
| Н     | 4.948        | 1.841        | -0.265       |
| Н     | 5.201        | -2.106       | -1.937       |
| 0     | 0.529        | -2.950       | -0.824       |
| Н     | -0.089       | -3.550       | -1.270       |
| 0     | -3.887       | -2.857       | -3.473       |
| Н     | -4.847       | -2.724       | -3.461       |
| 0     | -3.977       | 0.290        | 0.199        |
| 0     | -3.315       | 1.505        | 1.972        |
| С     | -1.044       | 1.811        | 0.029        |
| С     | -0.448       | 2.675        | 0.956        |
| С     | -1.215       | 2.264        | -1.287       |
| С     | -0.012       | 3.942        | 0.577        |
| Н     | -0.327       | 2.357        | 1.986        |
| С     | -0.783       | 3.529        | -1.677       |
| Н     | -1.683       | 1.619        | -2.024       |

| С | -0.177 | 4.375  | -0.744 |
|---|--------|--------|--------|
| Н | 0.451  | 4.598  | 1.312  |
| Н | -0.908 | 3.874  | -2.698 |
| 0 | 0.231  | 5.605  | -1.176 |
| Н | 0.614  | 6.091  | -0.429 |
| 0 | -0.764 | -1.126 | 5.079  |
| Н | -0.133 | -1.639 | 5.607  |
| 0 | 2.425  | -2.150 | 1.629  |
| Н | 2.829  | -2.603 | 2.385  |
| 0 | 6.562  | 0.014  | -1.411 |
| Н | 6.852  | 0.896  | -1.130 |

> Table S2 TDDFT results for the optimized conformer of (7bS)-1 (200nm $<\lambda<400$ nm). The TDDFT calculations are done at the level of B3LYP/6-31G(d) in the polarizable continuum model (CH<sub>3</sub>OH solvent: dielectric constant  $\varepsilon = 32.63$ ).

|            | Excitation          | Rotatory Strength        | Oggillator Strongth | Dominant                   |        |
|------------|---------------------|--------------------------|---------------------|----------------------------|--------|
| Transition | energy <sup>a</sup> | $R^b$                    |                     | Contributions <sup>c</sup> | Weight |
|            | (nm)                | $(10^{-40} \text{ cgs})$ | J                   |                            |        |
| 4          | 283.33              | 30.1915                  | 0.0550              | 124 →127                   | 0.44   |
| 5          | 281.26              | 36.4259                  | 0.0259              | 123 →127                   | 0.46   |
| 7          | 273.28              | 1.5034                   | 0.0621              | 126 →129                   | 0.26   |
| 10         | 264.87              | -47.8648                 | 0.0117              | 122 →127                   | 0.34   |
| 11         | 263.73              | -20.6052                 | 0.0078              | 125 →129                   | 0.32   |
| 12         | 261.37              | 52.7662                  | 0.0296              | 124 →128                   | 0.24   |
| 16         | 249.32              | 21.2609                  | 0.0362              | 126 →132                   | 0.24   |
| 18         | 247.56              | 15.7061                  | 0.0346              | 122 →128                   | 0.15   |
| 19         | 245.65              | 26.7606                  | 0.0456              | 123 →129                   | 0.30   |
| 21         | 243.29              | -16.5655                 | 0.0549              | 123 →130                   | 0.29   |
| 22         | 242.34              | 22.7906                  | 0.0298              | $121 \rightarrow 127$      | 0.30   |
| 23         | 240.22              | 76.2092                  | 0.0673              | 120 →127                   | 0.42   |
| 25         | 235.92              | -40.3156                 | 0.0327              | $119 \rightarrow 127$      | 0.24   |
| 26         | 235.41              | -27.1127                 | 0.0517              | $126 \rightarrow 134$      | 0.10   |
| 31         | 229.47              | 17.2238                  | 0.0408              | $122 \rightarrow 130$      | 0.26   |
| 32         | 228.41              | 31.0249                  | 0.0111              | $117 \rightarrow 127$      | 0.48   |
| 36         | 225.01              | 19.4478                  | 0.0132              | $124 \rightarrow 132$      | 0.20   |
| 15         | 216.50              | 20.0542                  | 0.1102              | $120 \rightarrow 129$      | 0.12   |
| 45         | 216.58              | 20.9542                  | 0.1105              | $126 \rightarrow 132$      | 0.14   |
| 16         | 216 11              | 22 7901                  | 0.0660              | $120 \rightarrow 129$      | 0.13   |
| 40         | 210.11              | 22.7801                  | 0.0009              | $123 \rightarrow 133$      | 0.10   |
| 48         | 215.11              | -37.8064                 | 0.0617              | $125 \rightarrow 135$      | 0.24   |
| 51         | 212.27              | 27 5224                  | 0.0208              | $120 \rightarrow 130$      | 0.10   |
| 51         | 212.27              | -27.3234                 | 0.0398              | $123 \rightarrow 134$      | 0.23   |
| 52         | 210.14              | 95.6042                  | 0.2251              | $122 \rightarrow 132$      | 0.15   |
| 53         | 208 12              | -32 60/2                 | 0.0157              | $119 \rightarrow 130$      | 0.17   |
| 55         | 200.12              | -52.0742                 | 0.0137              | $124 \rightarrow 135$      | 0.17   |
| 55         | 206 53              | 30 5997                  | 0.0228              | $119 \rightarrow 129$      | 0.11   |
| 55         | 200.33              | 50.5777                  | 0.0220              | $124 \rightarrow 135$      | 0.11   |
| 56         | 205 11              | -159.092                 | 0.1134              | $121 \rightarrow 132$      | 0.10   |
| 50         | 205.11              | -137.072                 | 0.1134              | $122 \rightarrow 133$      | 0.10   |
| 57         | 204.88              | -220.727                 | 0.1386              | $123 \rightarrow 134$      | 0.09   |
| 58         | 204 63              | -31 5183                 | 0.0487              | $121 \rightarrow 132$      | 0.12   |
| 50         | 201.05              | 51.5105                  | 0.0107              | $123 \rightarrow 135$      | 0.13   |
| 60         | 202 45              | -72 4806                 | 0 1782              | $120 \rightarrow 131$      | 0.13   |
| 00         | 202.70              | 12.1000                  | 0.1702              | $122 \rightarrow 134$      | 0.09   |
| 61         | 202.00              | 228.1845                 | 0.2204              | $122 \rightarrow 134$      | 0.19   |
| 62         | 201.12              | 236.9758                 | 0.3268              | $120 \rightarrow 132$      | 0.19   |
| 63         | 200.06              | 36.0665                  | 0.0614              | $116 \rightarrow 127$      | 0.39   |

<sup>*a*</sup> Excited states with f < 0.1 and  $R < \pm 16.0$  were not presented. All the excitation energies are shifted 11 nm according to the UV correction.

<sup>b</sup> All the strengths were in the velocity representation.

<sup>c</sup> Configurations with weights below 0.10 were not displayed.

> Table S3. The Cartesian coordinates of the optimized structure for 2 within PCM model (CH<sub>3</sub>OH solvent: dielectric constant  $\varepsilon$ =32.63) at B3LYP/6–31G(d) level.

| Atom | Х      | Y      | Ζ      |
|------|--------|--------|--------|
| С    | -1.250 | 0.628  | -0.748 |
| С    | 1.614  | 0.324  | -0.049 |
| С    | 1.711  | 1.792  | -0.550 |
| Н    | 0.906  | 0.358  | 0.789  |
| Н    | 2.503  | 2.299  | 0.017  |
| 0    | 2.048  | 1.772  | -1.938 |
| Н    | 2.074  | 2.694  | -2.241 |
| С    | 2.920  | -0.164 | 0.575  |
| С    | 2.872  | -1.034 | 1.667  |
| С    | 4.180  | 0.273  | 0.141  |
| С    | 4.035  | -1.469 | 2.306  |
| Н    | 1.909  | -1.384 | 2.033  |
| С    | 5.348  | -0.142 | 0.771  |
| Н    | 4.247  | 0.927  | -0.723 |
| С    | 5.279  | -1.020 | 1.859  |
| Н    | 3.971  | -2.145 | 3.158  |
| Н    | 6.321  | 0.197  | 0.431  |
| 0    | 6.460  | -1.397 | 2.443  |
| Н    | 6.265  | -1.997 | 3.180  |
| С    | 0.945  | -0.568 | -1.103 |
| С    | -0.446 | -0.436 | -1.363 |
| С    | 1.642  | -1.537 | -1.855 |
| С    | -1.093 | -1.287 | -2.282 |
| С    | 0.993  | -2.380 | -2.761 |
| С    | -0.375 | -2.253 | -2.974 |
| Н    | -2.144 | -1.139 | -2.496 |
| Н    | 1.552  | -3.124 | -3.322 |
| 0    | -0.951 | -3.094 | -3.885 |
| Н    | -1.891 | -2.871 | -3.963 |
| С    | 0.424  | 2.544  | -0.277 |
| С    | -0.864 | 1.872  | -0.337 |
| С    | 0.444  | 3.842  | 0.108  |
| С    | -2.042 | 2.609  | 0.097  |
| С    | -0.768 | 4.627  | 0.469  |
| Н    | 1.383  | 4.382  | 0.211  |
| С    | -2.041 | 3.907  | 0.470  |
| Н    | -2.942 | 4.434  | 0.764  |
| 0    | -0.670 | 5.817  | 0.776  |
| 0    | -3.133 | 1.803  | 0.074  |
| C    | -2.766 | 0.512  | -0.479 |
| 0    | -3.463 | 0.354  | -1.689 |
| H    | -4.410 | 0.349  | -1.468 |
| C    | -3.127 | -0.555 | 0.550  |
| C    | -2.941 | -0.314 | 1.916  |
| C    | -3.624 | -1.804 | 0.155  |
| С    | -3.245 | -1.288 | 2.862  |

| Н | -2.569 | 0.650  | 2.249  |
|---|--------|--------|--------|
| С | -3.935 | -2.785 | 1.092  |
| Н | -3.773 | -2.015 | -0.899 |
| С | -3.745 | -2.530 | 2.453  |
| Н | -3.102 | -1.080 | 3.921  |
| Н | -4.325 | -3.751 | 0.786  |
| 0 | -4.066 | -3.523 | 3.331  |
| Н | -3.891 | -3.218 | 4.235  |
| 0 | 2.990  | -1.654 | -1.696 |
| Н | 3.312  | -2.363 | -2.274 |

> Table S4. TDDFT results for the optimized conformer of compound (7aR, 8aR, 7bR)-2  $(200 \text{ nm} < \lambda < 600 \text{ nm})$ . The TDDFT calculations are done at the level of B3LYP/6-31G(d) in the PCM model (CH<sub>3</sub>OH solvent: dielectric constant  $\varepsilon$ =32.63).

| Transition | Excitation energy <sup>a</sup><br>(nm) | Rotatory Strength $R^b$<br>(10 <sup>-40</sup> cgs) | Oscillator Strength $f^{b}$ | Dominant<br>Contributions <sup>c</sup>                                    | Weight       |
|------------|----------------------------------------|----------------------------------------------------|-----------------------------|---------------------------------------------------------------------------|--------------|
| 2          | 468.92                                 | 20.2392                                            | 0.0151                      | $\begin{array}{c} 125 \rightarrow 127 \\ 126 \rightarrow 127 \end{array}$ | 0.11<br>0.26 |
| 4          | 388.61                                 | -28.0819                                           | 0.1250                      | $\begin{array}{c} 122 \rightarrow 127 \\ 124 \rightarrow 127 \end{array}$ | 0.20<br>0.15 |
| 5          | 378.57                                 | -70.7110                                           | 0.2493                      | $\begin{array}{c} 122 \rightarrow 127 \\ 124 \rightarrow 127 \end{array}$ | 0.20<br>0.20 |
| 6          | 362.02                                 | 16.6995                                            | 0.0739                      | $121 \rightarrow 127$                                                     | 0.36         |
| 9          | 296.93                                 | -21.5154                                           | 0.0409                      | $117 \rightarrow 127$                                                     | 0.36         |
| 10         | 290.56                                 | -22.1269                                           | 0.1405                      | $\begin{array}{c} 117 \rightarrow 127 \\ 119 \rightarrow 127 \end{array}$ | 0.13<br>0.22 |
| 24         | 233.72                                 | -22.6919                                           | 0.0247                      | $114 \rightarrow 127$ $124 \rightarrow 130$                               | 0.13<br>0.19 |
| 33         | 222.26                                 | -18.2217                                           | 0.0267                      | $124 \rightarrow 131$                                                     | 0.29         |
| 36         | 218.74                                 | -62.1837                                           | 0.0633                      | $122 \rightarrow 127$                                                     | 0.11         |
| 37         | 218.49                                 | 19.9538                                            | 0.0243                      | $122 \rightarrow 129$                                                     | 0.12         |
| 38         | 217.54                                 | 39.8335                                            | 0.0512                      | $123 \rightarrow 129$                                                     | 0.10         |
| 39         | 216.85                                 | 28.0179                                            | 0.0145                      | $\begin{array}{c} 121 \rightarrow 129 \\ 122 \rightarrow 130 \end{array}$ | 0.14<br>0.21 |
| 41         | 212.80                                 | 18.3992                                            | 0.0415                      | $112 \rightarrow 127$                                                     | 0.18         |
| 43         | 211.46                                 | 49.9723                                            | 0.0492                      | $125 \rightarrow 134$                                                     | 0.06         |
| 44         | 210.98                                 | -53.7444                                           | 0.0444                      | $121 \rightarrow 130$                                                     | 0.22         |
| 45         | 210.72                                 | 33.4481                                            | 0.0130                      | $111 \rightarrow 127$                                                     | 0.13         |

<sup>a</sup> Excited states with f < 0.1 and  $R < \pm 15.0$  were not presented.

<sup>b</sup> All the strengths were in the velocity representation.

<sup>c</sup> Configurations with weights below 0.10 were not displayed.

Table S5. The Cartesian coordinates of the optimized structure for **3** within PCM model (CH<sub>3</sub>OH solvent: dielectric constant  $\epsilon$ =32.63) at B3LYP/6-31G(d) level.

| Atom | Х      | Y      | Z      |
|------|--------|--------|--------|
| С    | 1.050  | 0.814  | -0.046 |
| С    | -1.970 | 1.409  | 0.808  |
| С    | -1.796 | 0.118  | -0.048 |
| С    | -3.141 | -0.525 | -0.389 |
| С    | -4.243 | -0.496 | 0.474  |
| С    | -3.316 | -1.124 | -1.643 |
| С    | -5.472 | -1.039 | 0.104  |
| Н    | -4.133 | -0.058 | 1.462  |
| С    | -4.534 | -1.682 | -2.029 |
| Н    | -2.480 | -1.155 | -2.341 |
| С    | -5.624 | -1.639 | -1.153 |
| Н    | -6.318 | -1.005 | 0.791  |
| Н    | -4.657 | -2.141 | -3.008 |
| 0    | -6.804 | -2.188 | -1.576 |
| Н    | -7.482 | -2.092 | -0.872 |
| С    | -0.941 | 2.458  | 0.432  |
| С    | 0.356  | 2.077  | 0.066  |
| С    | -1.245 | 3.821  | 0.427  |
| С    | 1.301  | 3.066  | -0.252 |
| С    | -0.279 | 4.791  | 0.086  |
| С    | 1.029  | 4.424  | -0.261 |
| С    | -0.707 | -0.855 | 0.460  |
| С    | 0.667  | -0.543 | 0.240  |
| С    | -0.977 | -2.107 | 1.024  |
| С    | 1.734  | -1.507 | 0.328  |
| С    | 0.050  | -3.047 | 1.204  |
| С    | 1.358  | -2.787 | 0.832  |
| С    | 4.172  | -2.075 | -0.155 |
| С    | 5.448  | -1.691 | -0.555 |
| Н    | 4.020  | -3.113 | 0.093  |
| С    | 4.712  | 0.574  | -0.844 |
| С    | 5.730  | -0.355 | -0.899 |
| Н    | 4.904  | 1.611  | -1.107 |
| 0    | -2.240 | -2.425 | 1.408  |
| Н    | -2.273 | -3.365 | 1.694  |
| 0    | 2.301  | -3.760 | 0.988  |
| Н    | 1.879  | -4.576 | 1.340  |
| Н    | -0.195 | -4.020 | 1.633  |
| С    | 2.348  | 1.135  | -0.368 |
| С    | 3.410  | 0.203  | -0.449 |
| С    | 3.103  | -1.151 | -0.078 |
| Н    | 6.735  | -0.068 | -1.206 |
| 0    | 6.403  | -2.667 | -0.599 |
| Н    | 7.258  | -2.283 | -0.896 |
| 0    | 2.524  | 2.495  | -0.529 |

| Н | -1.414 | 0.471 | -1.016 |
|---|--------|-------|--------|
| Н | -2.968 | 1.838 | 0.609  |
| 0 | -1.880 | 1.038 | 2.191  |
| Н | -2.119 | 1.828 | 2.720  |
| 0 | -0.567 | 6.125 | 0.076  |
| Н | -1.502 | 6.268 | 0.344  |
| Н | 1.773  | 5.173 | -0.515 |
| Н | -2.251 | 4.151 | 0.688  |

> Table S6. TDDFT results for the optimized conformer of compound (7aR, 8aR)-3 (200nm $<\lambda<600$ nm). The TDDFT calculations are done at the level of B3LYP/6-31G(d) in the PCM model (CH<sub>3</sub>OH solvent: dielectric constant  $\varepsilon$ =32.63).

| Transition | Excitation energy <sup>a</sup> (nm) | Rotatory Strength $R^b$<br>$(10^{-40} \text{ cgs})$ | Oscillator Strength $f^b$ | Dominant<br>Contributions <sup>c</sup>                            | Weight               |
|------------|-------------------------------------|-----------------------------------------------------|---------------------------|-------------------------------------------------------------------|----------------------|
| 1          | 357.47                              | -23.4709                                            | 0.3012                    | $121 \rightarrow 122$                                             | 0.36                 |
| 2          | 343.16                              | -21.2557                                            | 0.1386                    | $121 \rightarrow 123$                                             | 0.32                 |
| 3          | 308.97                              | -12.1778                                            | 0.1331                    | $120 \rightarrow 122$                                             | 0.31                 |
| 5          | 287.95                              | 22.7403                                             | 0.0440                    | $121 \rightarrow 124$                                             | 0.41                 |
| 6          | 285.12                              | -17.2423                                            | 0.1033                    | $118 \rightarrow 122$                                             | 0.30                 |
| 7          | 279.25                              | -21.1226                                            | 0.4884                    | $120 \rightarrow 123$                                             | 0.28                 |
| 9          | 271.95                              | 17.1501                                             | 0.2131                    | $121 \rightarrow 125$                                             | 0.26                 |
| 11         | 262.49                              | 59.0263                                             | 0.1940                    | $118 \rightarrow 123$ $120 \rightarrow 124$ $121 \rightarrow 126$ | 0.14<br>0.33<br>0.15 |
| 12         | 255.36                              | 0.1334                                              | 0.1380                    | $117 \rightarrow 122$                                             | 0.34                 |
| 13         | 249.96                              | 25.8374                                             | 0.0631                    | $120 \rightarrow 124$                                             | 0.23                 |
| 21         | 238.85                              | -23.7552                                            | 0.0146                    | $120 \rightarrow 126$                                             | 0.36                 |
| 22         | 232.08                              | 21.3873                                             | 0.0765                    | $119 \rightarrow 125$                                             | 0.39                 |
| 23         | 228.91                              | -8.8636                                             | 0.2678                    | $118 \rightarrow 124$                                             | 0.25                 |
| 31         | 215.64                              | 37.8311                                             | 0.0254                    | $118 \rightarrow 126$                                             | 0.26                 |
| 40         | 203.83                              | -15.7421                                            | 0.0359                    | $116 \rightarrow 124$                                             | 0.31                 |

<sup>*a*</sup> Excited states with f < 0.1 and  $R < \pm 15.0$  were not presented.

<sup>b</sup> All the strengths were in the velocity representation.
<sup>c</sup> Configurations with weights below 0.10 were not displayed.