SUPPLEMENTARY INFORMATION

Liu's equation:⁷⁹

$$D = \frac{\kappa}{\beta^2 \rho} exp\left(\frac{-0.75\beta^3 \rho}{1.2588 - \beta^3 \rho} - \gamma\right)$$

At constant temperature, the previous equation relates a bulk fluid self-diffusion coefficient, D, with the corresponding number density, ρ , using three numeric constants characteristic of each substance, namely κ , β , and γ , according to:

$$\kappa = 21.16\sqrt{1000RT/M}$$
$$\beta = \sigma_{LJ} 2^{1/6} \left[1 + \sqrt{\frac{1.3229T}{\varepsilon_{LJ}/k_B}} \right]^{-1/6}$$
$$\gamma = -\frac{0.27862(\varepsilon_{LJ}/k_B)}{T}$$

where, k_B is the Boltzmann constant (1.38065×10⁻²³ J·K⁻¹), *R* is the ideal gas constant (8.314472 J·K⁻¹mol⁻¹) and *M* is the molecular mass. Thus, to obtain the complete (ρ , *T*) surface, the only inputs are the Lennard-Jones potential parameters of the fluid (σ_{LJ} , ε_{LJ}).