. ,		CASSCF(9,7) ^b	CASSCF(9,7) ^b	B3LYP ^c
assignment	symmetry	\widetilde{B}	\widetilde{X}	\widetilde{X}
V ₃₂	a'	108	109	106
V ₅₇	a″	214	219	211
ν_{56}	a″	240	241	228
v_{31}	a'	245	250	244
v ₅₅	a″	267	256	252
v_{54}	a″	331	336	328
v_{30}	a'	355	377	364
v_{29}	a'	426	426	411
v_{28}	a'	456	455	431
V ₅₃	a″	463	465	450
v_{27}	a'	536	596	579
v_{26}	a'	694	781	749
v_{25}	a'	797	814	769
v_{52}	a″	817	851	795
v_{24}	a'	884	914	808
v_{51}	a″	908	951	882
v_{50}	a″	975	960	933
v_{23}	a'	989	991	948
v_{22}	a'	999	1024	951
v_{21}	a'	1009	1032	1001
v_{49}	a″	1030	1045	1017
v_{48}	a″	1097	1094	1039
v_{20}	a'	1104	1117	1057
v_{47}	a″	1140	1133	1066
v_{19}	a'	1164	1200	1112
v_{46}	a″	1220	1205	1148
ν_{18}	a'	1237	1282	1181
v_{45}	a″	1264	1286	1198
ν_{17}	a'	1316	1317	1222
ν_{16}	a'	1324	1321	1254
ν_{44}	a″	1371	1351	1272
ν_{43}	a″	1382	1387	1315
v_{15}	a'	1383	1388	1316
ν_{14}	a'	1414	1419	1322
v_{42}	a″	1442	1445	1351
v_{13}	a'	1463	1451	1360

Table 1. Calculated 57 vibrational frequencies (cm⁻¹) of the diequatorial chair conformer of *trans*-4-methylcyclohexoxy radical (C_s symmetry) in its ground state and \tilde{B} excited state.^a

Tuble 1. continued				
aggianmont	aunana atra	$CASSCF(9,7)^{b}$	CASSCF(9,7) ^b	B3LYP ^c
assignment	symmetry	\widetilde{B}	\widetilde{X}	\widetilde{X}
ν_{41}	a″	1476	1469	1382
v_{12}	a′	1484	1482	1405
v_{40}	a″	1542	1541	1471
v_{11}	a′	1555	1549	1475
V ₃₉	a″	1556	1554	1482
v_{38}	a″	1557	1556	1489
v_{10}	a′	1558	1557	1491
v 9	a'	1570	1564	1492
ν_8	a′	3010	2997	2777
v_{37}	a″	3022	3003	2928
v_7	a'	3029	3009	2943
ν_6	a'	3037	3018	2951
v_{36}	a″	3074	3031	2970
v_5	a'	3075	3032	2972
ν_4	a′	3090	3038	2977
V ₃₅	a″	3092	3062	2998
v_{34}	a″	3096	3066	3002
V ₃	a'	3097	3083	3027
v_2	a'	3138	3085	3029
V ₃₃	a″	3139	3088	3030
v_1	a'	3198	3089	3035
			1	

Table 1.-continued

^a All calculations employed the 6-31+G(d) basis set. ^b A uniform scale factor of 0.95 was used. ^c The calculated B3LYP frequencies are scaled by 0.98.

assignment	CASSCF(9,7) ^b	CASSCF(9,7) ^b	B3LYP ^c
	\widetilde{B}	\widetilde{X}	\widetilde{X}
V ₅₇	146	147	144
v_{56}	150	152	146
v ₅₅	239	239	228
v_{54}	244	243	234
V ₅₃	278	283	279
V ₅₂	349	348	339
v_{51}	380	399	383
v_{50}	405	419	408
v_{49}	454	449	431
v_{48}	463	475	457
v_{47}	525	550	535
v_{46}	680	794	756
v_{45}	796	851	775
v_{44}	868	884	820
V ₄₃	882	896	854
v_{42}	907	914	861
ν_{41}	935	957	914
ν_{40}	967	997	933
V ₃₉	1001	1003	961
v_{38}	1013	1014	984
V ₃₇	1058	1070	1016
v_{36}	1106	1098	1037
V ₃₅	1113	1125	1070
v_{34}	1139	1131	1076
V ₃₃	1163	1192	1117
V ₃₂	1207	1210	1155
v_{31}	1240	1269	1165
v_{30}	1272	1289	1191
v_{29}	1322	1312	1230
v_{28}	1326	1335	1263
v_{27}	1348	1349	1275
v_{26}	1386	1380	1289
V ₂₅	1402	1390	1319
v_{24}	1425	1434	1342
V ₂₃	1428	1436	1355
V ₂₂	1459	1449	1360

Table 2. Calculated 57 vibrational frequencies (cm⁻¹) of the diequatorial chair conformer of *cis*-3-methylcyclohexoxy radical (C₁ symmetry) in its ground state and \tilde{B} excited state.^a

Tuble 2:-continued				
assignment	$CASSCF(9,7)^{b}$	$CASSCF(9,7)^{b}$	B3LYP ^c	
	\widetilde{B}	\widetilde{X}	\widetilde{X}	
v_{21}	1475	1467	1375	
v_{20}	1483	1482	1403	
v_{19}	1544	1542	1471	
ν_{18}	1551	1547	1474	
v_{17}	1554	1552	1481	
v_{16}	1555	1556	1490	
v_{15}	1557	1557	1491	
v_{14}	1571	1566	1493	
v_{13}	3005	2993	2777	
v_{12}	3027	3002	2923	
v_{11}	3032	3015	2949	
ν_{10}	3038	3020	2956	
v 9	3071	3027	2966	
ν_8	3079	3033	2972	
v_7	3083	3038	2976	
ν_6	3094	3060	2999	
v_5	3096	3070	3008	
ν_4	3098	3078	3021	
v_3	3133	3086	3029	
v_2	3139	3089	3033	
\mathbf{v}_1	3199	3091	3038	
a All calculations employed the 6-31+G(d) basis set. b A				
uniform scale factor of 0.95 was used. ^c The calculated				
B3LYP frequencies are scaled by 0.98.				

Table 2.-continued

	CASSCF(9,7) ^b	CASSCF(9,7) ^b	B3LYP ^c
assignment	\widetilde{B}	\widetilde{X}	\widetilde{X}
V ₅₇	119	122	113
v_{56}	180	189	178
v ₅₅	218	236	225
v_{54}	267	263	254
V ₅₃	323	327	313
V ₅₂	340	344	335
v_{51}	348	356	341
v_{50}	399	432	416
V49	424	441	422
v_{48}	481	479	477
v_{47}	549	561	543
v_{46}	676	787	745
V 45	805	849	811
v_{44}	844	875	820
V 43	876	878	839
v_{42}	885	935	882
v_{41}	936	946	918
v_{40}	963	1007	932
V ₃₉	1007	1013	972
v_{38}	1028	1022	978
V ₃₇	1083	1072	1042
V ₃₆	1087	1097	1059
V ₃₅	1110	1110	1061
v_{34}	1142	1140	1101
V ₃₃	1166	1165	1115
V ₃₂	1202	1206	1147
v ₃₁	1237	1275	1192
V ₃₀	1272	1279	1238
V ₂₉	1310	1319	1243
V ₂₈	1322	1345	1260
v_{27}	1359	1368	1298
V ₂₆	1389	1387	1311
V ₂₅	1407	1421	1321
v_{24}	1408	1430	1346
V ₂₃	1433	1447	1348
V ₂₂	1444	1448	1362

Table 3. Calculated 57 vibrational frequencies (cm⁻¹) of the diequatorial chair conformer of *trans*-2-methylcyclohexoxy radical (C₁ symmetry) in its ground state and \tilde{B} excited state.^a

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2011

	$\frac{1}{CASSCF(9.7)^{b}}$	CASSCE(9.7) ^b	B3LVP ^c
assignment	\widetilde{B}	\widetilde{X}	\widetilde{X}
V ₂₁	1480	1461	1368
v_{20}	1503	1481	1400
v_{19}	1543	1545	1472
v_{18}	1549	1549	1477
v_{17}	1551	1553	1481
ν_{16}	1557	1555	1488
v_{15}	1564	1560	1492
ν_{14}	1567	1567	1493
v_{13}	3024	3005	2859
v_{12}	3030	3012	2946
ν_{11}	3034	3023	2957
ν_{10}	3039	3026	2962
v_9	3069	3027	2967
ν_8	3075	3034	2973
v_7	3079	3047	2995
v_6	3081	3063	2999
v_5	3093	3067	3007
ν_4	3098	3074	3013
v_3	3139	3086	3032
v_2	3150	3095	3051
ν_1	3187	3104	3053
a All calculations employed the 6-31+G(d) basis set. b A			
uniform scale factor of 0.95 was used. ^c The calculated			
B3LYP frequencies are scaled by 0.98.			

Table 3.-continued