Supporting Information

Injectable Biodegradable Polymeric System for Preserving the Active form and Delayed-Release of Camptothecin Anticancer Drugs

Olcay Mert, Güneş Esendağlı, A. Lale Doğan, Ayhan S. Demir^{*}

Tables and Figures	2
Copy of HPLC spectra	7
Copy of ¹ H NMR spectra6	51

Time									
(min)	Ι(λ ₁)	Ι(λ ₂)	R	R _L	R _C	$I_L(\lambda_2)$	$I_C(\lambda_2)$	L %	С %
0	206	60	3.43	3.43	2.18	60	264	99.91	0.09
20	269	92	2.92	3.43	2.18	60	264	86.40	13.60
40	324	121	2.69	3.43	2.18	60	264	75.13	24.87
60	373	145	2.57	3.43	2.18	60	264	66.53	33.47
80	418	168	2.50	3.43	2.18	60	264	59.77	40.23
100	454	186	2.45	3.43	2.18	60	264	54.50	45.50
120	486	202	2.41	3.43	2.18	60	264	49.26	50.74
140	511	216	2.37	3.43	2.18	60	264	44.28	55.72
160	533	226	2.36	3.43	2.18	60	264	42.28	57.72
180	552	237	2.33	3.43	2.18	60	264	38.21	61.79
200	567	246	2.31	3.43	2.18	60	264	33.72	66.28
220	578	251	2.31	3.43	2.18	60	264	32.91	67.09
240	586	255	2.30	3.43	2.18	60	264	32.35	67.65
260	594	259	2.30	3.43	2.18	60	264	31.42	68.58
280	599	261	2.29	3.43	2.18	60	264	30.45	69.55
300	601	263	2.29	3.43	2.18	60	264	29.70	70.30
310	601	264	2.28	3.43	2.18	60	264	26.91	73.09

Table 1 Lactone Conversion of free CPT via FL

Time									
(min)	Ι(λ ₁)	Ι(λ ₂)	R	R _L	R _C	$I_L(\lambda_2)$	$I_{C}(\lambda_{2})$	L %	С %
0	560	115	4.87	4.86	5.41	115	79	97.77	2.23
20	549	112	4.91	4.86	5.41	115	79	87.14	12.86
40	535	109	4.91	4.86	5.41	115	79	86.71	13.29
60	526	106	4.95	4.86	5.41	115	79	78.59	21.41
80	517	104	4.95	4.86	5.41	115	79	77.21	22.79
100	506	101	4.98	4.86	5.41	115	79	70.24	29.76
120	498	100	4.99	4.86	5.41	115	79	69.63	30.37
140	491	98	5.02	4.86	5.41	115	79	62.17	37.83
160	484	96	5.02	4.86	5.41	115	79	61.90	38.10
180	478	95	5.04	4.86	5.41	115	79	57.91	42.09
200	471	93	5.07	4.86	5.41	115	79	52.47	47.53
220	464	91	5.09	4.86	5.41	115	79	49.72	50.28
240	455	89	5.10	4.86	5.41	115	79	47.39	52.61
260	445	87	5.13	4.86	5.41	115	79	41.24	58.76
280	432	84	5.14	4.86	5.41	115	79	40.38	59.62
300	419	81	5.17	4.86	5.41	115	79	33.95	66.05
310	413	79	5.20	4.86	5.41	115	79	30.29	69.71

Table 2 Lactone Conversion of free TPT via FL

Time(min)	Ι(λ ₁)	$I(\lambda_2)$	R	R _L	R _C	$I_L(\lambda_2)$	$I_{C}(\lambda_{2})$	L %	С%
0	138.60	58.80	2.36	2.39	2.07	58.80	121.00	94.73	5.27
85	75.60	31.96	2.37	2.39	2.07	31.96	71.00	96.40	3.60
175	226.40	94.60	2.39	2.39	2.07	94.60	194.00	100.49	-0.49
260	185.60	77.50	2.39	2.39	2.07	77.50	165.00	100.70	-0.70
310	307.39	129.00	2.38	2.39	2.07	129.00	277.00	98.95	1.05

Table 3 CPT in gel, 0.015 % loading via FL

Table 4 TPT in gel, 0.015 % loading via FL

Time(min)	I(λ ₁)	$I(\lambda_2)$	R	R _L	R _C	$I_L(\lambda_2)$	$I_C(\lambda_2)$	L %	С %
0	246.0	84.4	2.91	2.89	3.7	84.4	68	96.24	3.76
85	232.2	79.5	2.92	2.89	3.7	79.5	65	95.40	4.60
175	268.5	92.2	2.91	2.89	3.7	92.2	73	96.57	3.43
260	253.8	87.8	2.89	2.89	3.7	87.8	71	99.90	0.10
310	529.2	181	2.92	2.89	3.7	181	144	94.82	5.18

Figure 1 HPLC Chromatograms of the conversion of lactone to carboxylate of free CPT with time elapsed.

Figure 2 HPLC Chromatograms of the conversion of lactone to carboxylate of TPT with time elapsed.

Figure 3 ATR-FTIR spectra of powder CPT (1) and CPT in copolymer gel (2) in the range of 2000-4000 cm⁻¹ (A) and 600-1800 cm⁻¹ (B). Copolymer gel was recorded as background.

Λш

First measurement of three independent data for free CPT in tris buffer at pH=7.4 Copy of the HPLC spectra

~

First measurement of three independent data for free CPT in tris buffer at pH=7.4 t=39 min

First measurement of three independent data for free CPT in tris buffer at pH=7.4 t=58 min

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2011

10

Λш

Λш

First measurement of three independent data for free CPT in tris buffer at pH=7.4 t=117 min

Λш

Λш

First measurement of three independent data for free CPT in tris buffer at pH=7.4 t=155 min

Λш

First measurement of three independent data for free CPT in tris buffer at pH=7.4 t=175 min

First measurement of three independent data for free CPT in tris buffer at pH=7.4 t= 194 min

First measurement of three independent data for free CPT in tris buffer at pH=7.4 t=213 min

Λш

First measurement of three independent data for free CPT in tris buffer at pH=7.4 t=232 min

First measurement of three independent data for free CPT in tris buffer at pH=7.4 t=271 min

First measurement of three independent data for free CPT in tris buffer at pH=7.4 t=290 min

Λm

First measurement of three independent data for free TPT in tris buffer at pH=7.4 t=0 min

First measurement of three independent data for free TPT in tris buffer at pH=7.4 t=20 min

First measurement of three independent data for free TPT in tris buffer at pH=7.4 t=39 min

Λm

First measurement of three independent data for free TPT in tris buffer at pH=7.4 t=58 min

First measurement of three independent data for free TPT in tris buffer at pH=7.4 t=78 min

Λш

First measurement of three independent data for free TPT in tris buffer at pH=7.4 t=97 min

First measurement of three independent data for free TPT in tris buffer at pH=7.4 t=117 min

Λш

First measurement of three independent data for free TPT in tris buffer at pH=7.4 t=136 min

Λш

First measurement of three independent data for free TPT in tris buffer at pH=7.4 t=155 min

First measurement of three independent data for free TPT in tris buffer at pH=7.4 t=175 min

First measurement of three independent data for free TPT in tris buffer at pH=7.4 t=194 min

First measurement of three independent data for free TPT in tris buffer at pH=7.4 t=232 min

First measurement of three independent data for CPT in gel at 0.015% loading

First measurement of three independent data for CPT in gel at 0.015% loading t = 90 min

Λm

First measurement of three independent data for CPT in gel at 0.015% loading

First measurement of three independent data for CPT in gel at 0.015% loading

47

Λш

First measurement of three independent data for CPT in gel at 0.015% loading t= 315 min

First measurement of three independent data for TPT in gel at 0.015% loading t= 0 min

First measurement of three independent data for TPT in gel at 0.015% loading

51

Λш

52

Λш

First measurement of three independent data for TPT in gel at 0.015% loading

First measurement of three independent data for TPT in gel at 0.015% loading t= 225 min

First measurement of three independent data for TPT in gel at 0.015% loading t= 315 min

First measurement of three independent data for CPT in gel at 1.0% loading (representative example)

First measurement of three independent data for CPT in gel at 10.0% loading (representative example)

60

First measurement of three independent data for TPT in gel at 10.0% loading (representative example)

Copolymer 2

Copolymer 3