Supporting Information

<u>Title:</u> Titanium and zirconium amido complexes supported by imidazole-containing ligands: syntheses, characterizations and catalytic activities

Authors:

Yang Zhao, Miaoshui Lin, Zhou Chen, Hao Pei, Yahong Li,^{*} Yanmei Chen, Xiufang Wang, Lei Li, Yanyuan Cao, Yong Zhang, and Wu Li

- 1. Crystallography data for **2** and **6**·THF.
- 2. ¹H and ¹³C NMR spectra for the complexes and ligand HL4.
- 3. ¹H and ¹³C NMR spectra, IR and HRMS data for the hydroamination products.

1. Crystallography data for 2 and 6·THF.

1.1 Crystal data and structure refinements for and 2 and 6 THF

Complex	2	6 •THF
Empirical formula	C ₂₆ H ₃₀ Cl ₂ N ₆ Ti	C44H36Cl4N8Ti
Formula weight	545.36	866.51
Temperature	223(2) K	223(2) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	Orthorhombic	Triclinic
Space group	$P 2_1 2_1 2_1$	<i>P</i> -1
a/Å	11.829(2)	8.9628(18)
b/Å	12.517(3)	13.517(3)
$c/{ m \AA}$	18.391(4)	19.262(4)
α/°	90.00	73.96(3)
$\beta/^{\circ}$	90.00	87.86(3)
γ/°	90.00	74.76(3)
Volume/Å ³	2723.2(9)	2162.3(8)
$ ho/g \ cm^{-3}$	1.330	1.331
Ζ	4	2
<i>F</i> (000)	1136	892
Crystal size/mm	0.20 x 0.15 x 0.15	0.40 x 0.20 x 0.20
θ/°	3.24 to 25.30	3.08 to 25.00
Limiting indices	-12 <h<13< td=""><td>-8<h<10< td=""></h<10<></td></h<13<>	-8 <h<10< td=""></h<10<>
	-10 <k<15< td=""><td>-16<k<15< td=""></k<15<></td></k<15<>	-16 <k<15< td=""></k<15<>
	-20<1<22	-22<1<22
Reflections collected / unique	8641 / 4561	17888 / 7536
Data/ restraints/ parameters	4561 / 0 / 323	7536 / 7 / 518
GOF	0.999	1.099
R_1 , wR_2	$R_1 = 0.0406$	$R_1 = 0.0879$
[I>2 <i>σ</i> (I)]	$wR_2 = 0.0871$	$wR_2 = 0.1709$
R_1 , wR_2	$R_1 = 0.0452$	$R_1 = 0.1400$
(all data)	$wR_2 = 0.0906$	$wR_2 = 0.1971$
Largest diff. peak and hole /e. $Å^3$	0.222 and -0.231	0.269 and -0.390

Table 1 Crystal data and structure refinements for 2 and 6. THF

1.2 Bond lengths (Å) and angles (°) for $\mathbf{2}$.

Ti(1)-N(4)	1.880(3)
Ti(1)-N(6)	1.902(3)
Ti(1)-N(5)	1.914(3)
Ti(1)-N(2)	2.142(2)
Ti(1)-N(1)	2.292(2)
Cl(2)-C(18)	1.738(3)
N(2)-C(6)	1.368(3)
N(2)-C(7)	1.385(3)
Cl(1)-C(12)	1.737(3)
N(1)-C(1)	1.339(4)
N(1)-C(5)	1.355(4)
C(7)-C(8)	1.400(4)
C(7)-C(9)	1.463(4)
C(6)-N(3)	1.330(4)
C(6)-C(5)	1.446(4)
C(8)-N(3)	1.380(4)
C(8)-C(15)	1.464(4)
C(15)-C(20)	1.390(4)
C(15)-C(16)	1.391(4)
C(20)-C(19)	1.385(5)
N(6)-C(23)	1.446(5)
N(6)-C(24)	1.470(5)
C(4)-C(3)	1.379(5)
C(4)-C(5)	1.385(4)
C(1)-C(2)	1.369(5)
C(18)-C(17)	1.368(4)
C(18)-C(19)	1.391(5)
C(13)-C(12)	1.372(5)
C(13)-C(14)	1.385(4)
N(5)-C(21)	1.450(5)
N(5)-C(22)	1.469(4)
C(14)-C(9)	1.390(4)
C(9)-C(10)	1.388(4)
C(10)-C(11)	1.387(4)
C(3)-C(2)	1.379(5)
C(17)-C(16)	1.387(4)
N(4)-C(25)	1.439(5)
N(4)-C(26)	1.451(5)
C(11)-C(12)	1.372(5)

Table 2Bond lengths (Å) and angles (°) for 2

N(4)-Ti(1)-N(6)	98.21(13)
N(4)-Ti(1)-N(5)	110.46(12)
N(6)-Ti(1)-N(5)	95.24(13)
N(4)-Ti(1)-N(2)	124.57(11)
N(6)-Ti(1)-N(2)	96.20(10)
N(5)-Ti(1)-N(2)	121.06(11)
N(4)-Ti(1)-N(1)	91.29(11)
N(6)-Ti(1)-N(1)	168.59(10)
N(5)-Ti(1)-N(1)	87.28(11)
N(2)-Ti(1)-N(1)	73.08(8)
C(6)-N(2)-C(7)	103.9(2)
C(6)-N(2)-Ti(1)	115.02(18)
C(7)-N(2)-Ti(1)	138.04(18)
C(1)-N(1)-C(5)	118.2(3)
C(1)-N(1)-Ti(1)	126.8(2)
C(5)-N(1)-Ti(1)	113.90(19)
N(2)-C(7)-C(8)	107.4(2)
N(2)-C(7)-C(9)	124.0(2)
C(8)-C(7)-C(9)	128.5(2)
N(3)-C(6)-N(2)	115.2(3)
N(3)-C(6)-C(5)	125.8(3)
N(2)-C(6)-C(5)	118.9(3)
N(3)-C(8)-C(7)	109.6(2)
N(3)-C(8)-C(15)	120.6(2)
C(7)-C(8)-C(15)	129.8(3)
C(20)-C(15)-C(16)	117.3(3)
C(20)-C(15)-C(8)	120.0(3)
C(16)-C(15)-C(8)	122.7(3)
C(19)-C(20)-C(15)	121.9(3)
C(23)-N(6)-C(24)	109.7(4)
C(23)-N(6)-Ti(1)	130.6(3)
C(24)-N(6)-Ti(1)	119.6(3)
C(3)-C(4)-C(5)	119.2(3)
N(1)-C(1)-C(2)	122.9(3)
C(6)-N(3)-C(8)	103.8(2)
C(17)-C(18)-C(19)	121.0(3)
C(17)-C(18)-Cl(2)	119.9(2)
C(19)-C(18)-Cl(2)	119.1(2)
C(12)-C(13)-C(14)	119.2(3)
N(1)-C(5)-C(4)	121.6(3)
N(1)-C(5)-C(6)	113.2(3)
C(4)-C(5)-C(6)	125.2(3)
C(21)-N(5)-C(22)	108.9(3)

C(21)-N(5)-Ti(1)	128.4(2)
C(22)-N(5)-Ti(1)	122.4(3)
C(13)-C(14)-C(9)	121.1(3)
C(14)-C(9)-C(10)	118.5(3)
C(14)-C(9)-C(7)	119.8(3)
C(10)-C(9)-C(7)	121.7(3)
C(11)-C(10)-C(9)	120.3(3)
C(4)-C(3)-C(2)	119.0(3)
C(18)-C(17)-C(16)	119.2(3)
C(25)-N(4)-C(26)	112.4(3)
C(25)-N(4)-Ti(1)	115.6(2)
C(26)-N(4)-Ti(1)	132.0(3)
C(17)-C(16)-C(15)	121.8(3)
C(20)-C(19)-C(18)	118.7(3)
C(12)-C(11)-C(10)	120.0(3)
C(11)-C(12)-C(13)	120.8(3)
C(11)-C(12)-Cl(1)	120.0(3)
C(13)-C(12)-Cl(1)	119.2(3)
C(1)-C(2)-C(3)	119.1(3)

Table 3 Bond lengths (Å) and angles (°) for 6•THF.

Cl(1)-C(12)	1.744(6)
N(1)-C(6)	1.370(6)
N(1)-C(8)	1.394(6)
N(1)-Ti(2)	2.124(4)
C(1)-N(3)	1.347(6)
C(1)-C(2)	1.379(7)
C(1)-C(6)	1.448(7)
Ti(2)-N(8)	1.880(5)
Ti(2)-N(7)	1.902(4)
Ti(2)-N(4)	2.152(4)
Ti(2)-N(3)	2.308(4)
Ti(2)-N(6)	2.314(5)
Cl(2)-C(18)	1.734(6)
N(2)-C(6)	1.326(6)
N(2)-C(7)	1.370(6)
C(2)-C(3)	1.373(8)
C(2)-H(2)	0.9400
Cl(3)-C(32)	1.741(5)
N(3)-C(5)	1.360(6)
C(3)-C(4)	1.388(8)

C(3)-H(3)	0.9400
Cl(4)-C(38)	1.741(6)
N(4)-C(26)	1.364(6)
N(4)-C(28)	1.392(6)
C(4)-C(5)	1.368(8)
C(4)-H(4)	0.9400
N(5)-C(26)	1.350(6)
N(5)-C(27)	1.365(6)
C(5)-H(5)	0.9400
N(6)-C(25)	1.343(7)
N(6)-C(21)	1.359(6)
N(7)-C(41)	1.475(7)
N(7)-C(42)	1.476(7)
C(7)-C(8)	1.387(7)
C(7)-C(9)	1.484(7)
N(8)-C(44)	1.469(7)
N(8)-C(43)	1.477(7)
C(8)-C(15)	1.476(7)
C(9)-C(10)	1.387(7)
C(9)-C(14)	1.393(7)
C(10)-C(11)	1.402(7)
C(10)-H(10)	0.9400
C(11)-C(12)	1.362(8)
С(11)-Н(11)	0.9400
C(12)-C(13)	1.378(8)
C(13)-C(14)	1.374(8)
C(13)-H(13)	0.9400
C(14)-H(14)	0.9400
C(15)-C(20)	1.388(7)
C(15)-C(16)	1.388(7)
C(16)-C(17)	1.390(8)
C(16)-H(16)	0.9400
C(17)-C(18)	1.379(9)
C(17)-H(17)	0.9400
C(18)-C(19)	1.368(9)
C(19)-C(20)	1.380(8)
C(19)-H(19)	0.9400
C(20)-H(20)	0.9400
C(21)-C(22)	1.378(7)
C(21)-C(26)	1.446(7)
C(22)-C(23)	1.366(7)
C(22)-H(22)	0.9400
C(23)-C(24)	1.390(7)
C(23)-H(23)	0.9400

C(24)-C(25)	1.380(7)
C(24)-H(24)	0.9400
C(25)-H(25)	0.9400
C(27)-C(28)	1.386(7)
C(27)-C(29)	1.484(7)
C(28)-C(35)	1.477(7)
C(29)-C(30)	1.380(7)
C(29)-C(34)	1.390(7)
C(30)-C(31)	1.383(7)
C(30)-H(30)	0.9400
C(31)-C(32)	1.368(8)
C(31)-H(31)	0.9400
C(32)-C(33)	1.368(8)
C(33)-C(34)	1.372(7)
C(33)-H(33)	0.9400
C(34)-H(34)	0.9400
C(35)-C(36)	1.386(7)
C(35)-C(40)	1.387(7)
C(36)-C(37)	1.380(8)
C(36)-H(36)	0.9400
C(37)-C(38)	1.392(8)
C(37)-H(37)	0.9400
C(38)-C(39)	1.392(8)
C(39)-C(40)	1.377(8)
C(39)-H(39)	0.9400
C(40)-H(40)	0.9400
C(41)-H(41A)	0.9700
C(41)-H(41B)	0.9700
C(41)-H(41C)	0.9700
C(42)-H(42A)	0.9700
C(42)-H(42B)	0.9700
C(42)-H(42C)	0.9700
C(43)-H(43A)	0.9700
C(43)-H(43B)	0.9700
C(43)-H(43C)	0.9700
C(44)-H(44A)	0.9700
C(44)-H(44B)	0.9700
C(44)-H(44C)	0.9700
C(6)-N(1)-C(8)	103.4(4)
C(6)-N(1)-Ti(2)	115.9(3)
C(8)-N(1)-Ti(2)	140.1(3)
N(3)-C(1)-C(2)	122.0(5)
N(3)-C(1)-C(6)	115.2(4)

C(2)-C(1)-C(6)	122.7(5)
N(8)-Ti(2)-N(7)	104.9(2)
N(8)-Ti(2)-N(1)	97.18(18)
N(7)-Ti(2)-N(1)	100.82(18)
N(8)-Ti(2)-N(4)	100.11(18)
N(7)-Ti(2)-N(4)	96.49(17)
N(1)-Ti(2)-N(4)	151.44(16)
N(8)-Ti(2)-N(3)	87.00(17)
N(7)-Ti(2)-N(3)	167.93(18)
N(1)-Ti(2)-N(3)	75.20(15)
N(4)-Ti(2)-N(3)	83.16(15)
N(8)-Ti(2)-N(6)	160.54(17)
N(7)-Ti(2)-N(6)	94.23(18)
N(1)-Ti(2)-N(6)	82.41(16)
N(4)-Ti(2)-N(6)	73.77(16)
N(3)-Ti(2)-N(6)	74.04(15)
C(6)-N(2)-C(7)	103.6(4)
C(3)-C(2)-C(1)	120.2(6)
C(3)-C(2)-H(2)	119.9
C(1)-C(2)-H(2)	119.9
C(1)-N(3)-C(5)	117.1(5)
C(1)-N(3)-Ti(2)	113.3(3)
C(5)-N(3)-Ti(2)	129.7(4)
C(2)-C(3)-C(4)	118.6(6)
C(2)-C(3)-H(3)	120.7
C(4)-C(3)-H(3)	120.7
C(26)-N(4)-C(28)	103.5(4)
C(26)-N(4)-Ti(2)	115.6(3)
C(28)-N(4)-Ti(2)	139.6(4)
C(5)-C(4)-C(3)	118.5(6)
C(5)-C(4)-H(4)	120.7
C(3)-C(4)-H(4)	120.7
C(26)-N(5)-C(27)	103.3(4)
N(3)-C(5)-C(4)	123.6(5)
N(3)-C(5)-H(5)	118.2
C(4)-C(5)-H(5)	118.2
C(25)-N(6)-C(21)	117.5(5)
C(25)-N(6)-Ti(2)	127.9(4)
C(21)-N(6)-Ti(2)	114.3(3)
N(2)-C(6)-N(1)	115.3(4)
N(2)-C(6)-C(1)	124.8(5)
N(1)-C(6)-C(1)	119.9(4)
C(41)-N(7)-C(42)	107.7(5)
C(41)-N(7)-Ti(2)	127.4(4)

C(42)-N(7)-Ti(2)	124.6(4)
N(2)-C(7)-C(8)	110.6(4)
N(2)-C(7)-C(9)	119.4(4)
C(8)-C(7)-C(9)	129.8(5)
C(44)-N(8)-C(43)	110.2(5)
C(44)-N(8)-Ti(2)	129.8(4)
C(43)-N(8)-Ti(2)	118.7(4)
C(7)-C(8)-N(1)	107.1(4)
C(7)-C(8)-C(15)	130.8(5)
N(1)-C(8)-C(15)	121.8(4)
C(10)-C(9)-C(14)	116.9(5)
C(10)-C(9)-C(7)	118.0(5)
C(14)-C(9)-C(7)	125.0(5)
C(9)-C(10)-C(11)	121.6(5)
C(9)-C(10)-H(10)	119.2
С(11)-С(10)-Н(10)	119.2
C(12)-C(11)-C(10)	119.2(5)
C(12)-C(11)-H(11)	120.4
C(10)-C(11)-H(11)	120.4
C(11)-C(12)-C(13)	120.7(5)
C(11)-C(12)-Cl(1)	119.0(4)
C(13)-C(12)-Cl(1)	120.3(5)
C(14)-C(13)-C(12)	119.6(5)
C(14)-C(13)-H(13)	120.2
C(12)-C(13)-H(13)	120.2
C(13)-C(14)-C(9)	122.0(5)
C(13)-C(14)-H(14)	119.0
C(9)-C(14)-H(14)	119.0
C(20)-C(15)-C(16)	117.5(5)
C(20)-C(15)-C(8)	122.8(5)
C(16)-C(15)-C(8)	119.7(5)
C(15)-C(16)-C(17)	121.7(6)
C(15)-C(16)-H(16)	119.2
C(17)-C(16)-H(16)	119.2
C(18)-C(17)-C(16)	118.4(6)
С(18)-С(17)-Н(17)	120.8
C(16)-C(17)-H(17)	120.8
C(19)-C(18)-C(17)	121.6(5)
C(19)-C(18)-Cl(2)	119.4(5)
C(17)-C(18)-Cl(2)	118.9(5)
C(18)-C(19)-C(20)	118.9(6)
C(18)-C(19)-H(19)	120.6
C(20)-C(19)-H(19)	120.6
C(19)-C(20)-C(15)	121.9(6)

C(19)-C(20)-H(20)	119.1
C(15)-C(20)-H(20)	119.1
N(6)-C(21)-C(22)	122.9(5)
N(6)-C(21)-C(26)	113.7(5)
C(22)-C(21)-C(26)	123.4(5)
C(23)-C(22)-C(21)	118.1(5)
С(23)-С(22)-Н(22)	121.0
С(21)-С(22)-Н(22)	121.0
C(22)-C(23)-C(24)	120.7(5)
C(22)-C(23)-H(23)	119.6
С(24)-С(23)-Н(23)	119.6
C(25)-C(24)-C(23)	117.6(5)
C(25)-C(24)-H(24)	121.2
C(23)-C(24)-H(24)	121.2
N(6)-C(25)-C(24)	123.2(5)
N(6)-C(25)-H(25)	118.4
С(24)-С(25)-Н(25)	118.4
N(5)-C(26)-N(4)	114.9(5)
N(5)-C(26)-C(21)	124.7(5)
N(4)-C(26)-C(21)	120.4(4)
N(5)-C(27)-C(28)	110.6(4)
N(5)-C(27)-C(29)	119.2(5)
C(28)-C(27)-C(29)	130.1(5)
C(27)-C(28)-N(4)	107.6(4)
C(27)-C(28)-C(35)	130.1(5)
N(4)-C(28)-C(35)	122.2(4)
C(30)-C(29)-C(34)	118.0(5)
C(30)-C(29)-C(27)	120.8(5)
C(34)-C(29)-C(27)	121.2(5)
C(29)-C(30)-C(31)	120.9(5)
C(29)-C(30)-H(30)	119.5
C(31)-C(30)-H(30)	119.5
C(32)-C(31)-C(30)	119.8(5)
C(32)-C(31)-H(31)	120.1
C(30)-C(31)-H(31)	120.1
C(33)-C(32)-C(31)	120.3(5)
C(33)-C(32)-Cl(3)	119.0(5)
C(31)-C(32)-Cl(3)	120.7(4)
C(32)-C(33)-C(34)	120.0(5)
C(32)-C(33)-H(33)	120.0
C(34)-C(33)-H(33)	120.0
C(33)-C(34)-C(29)	121.0(5)
C(33)-C(34)-H(34)	119.5
C(29)-C(34)-H(34)	119.5

C(36)-C(35)-C(40)	117.9(5)
C(36)-C(35)-C(28)	122.0(5)
C(40)-C(35)-C(28)	120.0(5)
C(37)-C(36)-C(35)	121.6(6)
C(37)-C(36)-H(36)	119.2
C(35)-C(36)-H(36)	119.2
C(36)-C(37)-C(38)	119.3(6)
С(36)-С(37)-Н(37)	120.4
C(38)-C(37)-H(37)	120.4
C(37)-C(38)-C(39)	120.2(6)
C(37)-C(38)-Cl(4)	120.2(5)
C(39)-C(38)-Cl(4)	119.5(5)
C(40)-C(39)-C(38)	119.0(6)
C(40)-C(39)-H(39)	120.5
C(38)-C(39)-H(39)	120.5
C(39)-C(40)-C(35)	122.0(6)
C(39)-C(40)-H(40)	119.0
C(35)-C(40)-H(40)	119.0
N(7)-C(41)-H(41A)	109.5
N(7)-C(41)-H(41B)	109.5
H(41A)-C(41)-H(41B)	109.5
N(7)-C(41)-H(41C)	109.5
H(41A)-C(41)-H(41C)	109.5
H(41B)-C(41)-H(41C)	109.5
N(7)-C(42)-H(42A)	109.5
N(7)-C(42)-H(42B)	109.5
H(42A)-C(42)-H(42B)	109.5
N(7)-C(42)-H(42C)	109.5
H(42A)-C(42)-H(42C)	109.5
H(42B)-C(42)-H(42C)	109.5
N(8)-C(43)-H(43A)	109.5
N(8)-C(43)-H(43B)	109.5
H(43A)-C(43)-H(43B)	109.5
N(8)-C(43)-H(43C)	109.5
H(43A)-C(43)-H(43C)	109.5
H(43B)-C(43)-H(43C)	109.5
N(8)-C(44)-H(44A)	109.5
N(8)-C(44)-H(44B)	109.5
H(44A)-C(44)-H(44B)	109.5
N(8)-C(44)-H(44C)	109.5
H(44A)-C(44)-H(44C)	109.5
H(44B)-C(44)-H(44C)	109.5

2. ¹H and ¹³C NMR spectra for the complexes.

2.1 ¹H and ¹³C NMR spectra for 1

¹**H NMR (400 MHz, CDCl₃)** δ 8.15(d, 1H), 7.83 (d, 1H), 7.35 (m, 2H), 7.19 (m, 5H), 7.11 (m, 3H), 7.05 (m, 2H), 2.84 (s, 18H); ¹³**C NMR (100 MHz, CDCl₃)** δ 153.70, 149.95, 147.47, 139.60, 136.02, 130.85, 130.79, 129.25, 128.44, 128.23, 128.19, 128.08, 127.92, 127.51, 127.46, 126.62, 126.22, 125.82, 125.48, 121.71, 119.21, 46.16

2.2 1 H and 13 C NMR spectra for 2

¹**HNMR** (**400 MHz, CDCl**₃) δ = 8.18 (d, 1H), 7.93 (d, 1H), 7.84 (t, 1H), 7.36 (d, 2H), 7.27-7.25 (d, 2H), 7.22–7.13 (m, 5H), 2.93 (s, 18H). ¹³**CNMR(100MHz, CDCl**₃) δ = 154.10, 152.20, 147.86, 140.76, 140.01, 139.64, 134.74, 134.52, 132.89, 132.11, 131.92, 129.34, 128.53, 127.95, 122.27, 119.48, 46.33.

2.3 1 H and 13 C NMR spectra for **3**

¹**H NMR (400 MHz, CDCl₃)** δ 8.16 (t, 1H), 7.88 (d, 1H), 7.26 (s, 3H), 7.06 (s, 1H), 6.98 (d, 1H), 6.90 (d, 1H), 6.81 (d, 2H), 6.71– 6.66 (m, 2H), 3.67 (s, 3H), 3.31 (s, 3H), 2.92 (s, 18H). ¹³**C NMR (75 MHz, CDCl₃)** δ 158.41, 157.91, 152.18, 149.61, 147.34, 140.45, 139.49, 131.89, 129.00, 128.58, 121.58, 119.07, 113.68, 113.61, 113.54, 113.00, 55.45, 55.35, 46.17.

2.4 ¹H and ¹³C NMR spectra for 4. THF

¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, 1H), 7.88 (d, 1H), 7.76 (s, 1H), 7.46 (s, 1H), 7.18 (s, 4H), 6.98 (d, 1H), 6.82 (m, 1H), 6.71–6.67 (m, 2H), 3.67 (s, 3H), 3.31 (s, 3H), 3.26 (s, 3H)2.92 (s, 18H) 2.35 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 157.82, 156.98, 152.02, 148.76, 139.96, 132.25, 131.66, 128.43, 128.06, 125.73, 121.79, 120.41, 119.92, 119.11, 110.81, 110.43, 68.26, 46.65, 44.08, 43.50, 25.72.

2.5 1 H and 13 C NMR spectra for **5**•THF

¹H NMR (300 MHz, CDCl₃) δ 8.12 (d, 2H), 7.60 (d, 6H), 7.45 (s, 6H), 7.33 (s, 7H), 7.22 (d, 3H), 7.14 (d, 2H), 6.88 (t, 2H), 3.73 (s, 5H), 2.61 (s, 12H), 1.83 (s, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 146.71, 146.03, 141.22, 136.32, 134.89, 133.88, 131.95, 131.26, 126.53, 123.49, 123.30, 122.78, 122.71, 121.27, 117.23, 115.12, 63.49, 42.64, 21.02.

2.6 ¹H and ¹³C NMR spectra for **6**•THF

¹**H NMR** (**400 MHz**, **CDCl**₃): $\delta = 8.13$ (s, 2 H), 7.65 (s, 2 H), 7.45 (d, 18 H), 6.95 (s, 2 H), 3.75 (s, 4 H), 2.66 (s, 12 H), 1.84 (s, 4 H). ¹³**C NMR** (**100 MHz**, **CDCl**₃): $\delta = 151.10$, 151.02, 145.70, 140.30, 138.86, 138.18, 134.72, 134.13, 133.65, 132.21, 131.86, 128.69, 128.40, 128.32, 122.32, 120.00, 68.09, 47.60, 25.74.

2.7 1 H and 13 C NMR spectra for **7**•THF

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.02 (d, 2H), 7.50 (dd, 6H), 7.38–7.29 (m, 6H), 6.83 (d, 6H), 6.75 (d, 4H), 3.78 (s, 6H), 3.73 (s, 6H), 3.68 (s, 4H), 2.59 (s, 12H), 1.78 (s, 4H); ¹³**C NMR** (**75 MHz**, **CDCl**₃) δ 159.11, 158.01, 151.48, 150.36, 145.98, 140.77, 138.53, 132.28, 129.26, 129.00, 128.56, 121.71, 119.66, 113.68, 113.42, 68.21, 55.52, 55.42, 47.58, 25.84.

2.8 1 H and 13 C NMR spectra for **8**

¹**H NMR (400 MHz, CDCl₃)** δ 8.05 (d, 2H), 7.63–7.51 (m, 6H), 7.18 (t, 8H), 6.90 (d, 4H), 6.75 (t, 4H), 3.42 (d, 12H), 2.65 (s, 12H); ¹³**C NMR (100 MHz, CDCl₃)** δ 151.19, 150.36, 140.14, 133.67, 131.42, 126.04, 124.75, 122.46, 121.66, 121.47, 120.89, 120.26, 120.01, 118.73, 114.33, 113.60, 112.63, 112.37, 104.29, 103.50, 48.37, 48.16, 40.78.

220 210 200

190

170 160

180

140 130 120

110 100 f1 (ppm) 90 80 70 60 50 40 30 20

150

10 0 -10

2.9 1 H and 13 C NMR spectra for **9**

¹H NMR (300 MHz, CDCl₃) δ 8.15 (d, 1H), 7.58 (d, 4H), 7.33 (s, 6H), 7.14 (d, 2H), 6.93 (d, 1H), 3.71 (s, 4H), 2.32 (s, 18H), 1.82 (s, 4H).
¹³C NMR (75 MHz, CDCl₃) δ 152.11, 151.78, 139.52, 139.19, 135.98, 130.62,

128.26, 128.14, 127.53, 126.18, 122.23, 120.33, 68.81, 41.45, 25.66.

2.10 ¹H and ¹³C NMR spectra for **10**•1.5THF

¹H NMR (300 MHz, CDCl₃) δ 8.17 (d, 2H), 7.60 (d, 7H), 7.49 (s, 6H), 7.35 (s, 7H), 7.17 (d, 3H), 6.94 (s, 3H), 3.74 (s, 6H), 2.34 (s, 12H), 1.84 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 150.79, 150.47, 144.96, 140.00, 138.21, 137.85, 134.66, 134.49, 129.31, 126.96, 126.82, 126.22, 124.88, 120.91, 119.02, 103.64, 66.88, 40.12, 24.51.

2.11 ¹H and ¹³C NMR spectra for **11**•0.5THF

¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, 2H), 7.61 (s, 3H), 7.42 (m, 10H), 7.16 (d, 6H), 6.91 (s, 3H), 3.67 (s, 3H), 2.31 (s, 12H), 1.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.09, 153.90, 148.13, 142.65, 141.53, 140.23, 136.17, 136.10, 135.79, 134.15, 133.82, 130.86, 130.57, 130.47, 124.63, 122.60, 70.26, 43.65, 27.79

2.12 ¹H and ¹³C NMR spectra for **12**•0.5THF

¹H NMR (300 MHz, CDCl₃) δ 8.11 (d, 2H), 7.65–7.47 (m, 6H), 7.39 (s, 6H), 6.89 (s, 6H), 6.80 (s, 4H), 3.81 (s, 6H), 3.76 (s, 6H), 3.71 (s, 2H), 2.36 (s, 12H), 1.81 (s, 2H);
¹³C NMR (75 MHz, CDCl₃) δ 157.80, 156.81, 150.82, 144.93, 139.65, 137.75, 137.10, 130.43, 127.50, 127.30, 127.21, 120.59, 118.81, 112.38, 112.21, 66.86, 54.20, 54.07, 24.50

2.13 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra for the ligand HL4

2.13 ¹H NMR spectrum for the HL4 ligand

¹**H NMR (400 MHz, CDCl**₃) δ 11.57 (s, 1H), 8.43 (d, 1H), 8.26 (d, 1H), 7.69 (s, 1H), 7.57 (s, 1H), 7.28 (s, 4H), 7.11 (d, 1H), 6.87 (m, 1H), 6.73 (m, 2H), 3.81(s, 3H), 3.48 (s, 3H).

3. ¹H and ¹³C NMR spectra, IR and HRMS data for the hydroamination

products.

3.1 N-(1-Phenylethyl) aniline

Colorless oil.¹**H NMR (400 MHz, CDCl₃)**: δ = 7.36 (d, 2H, Ar-H), 7.30 (t, 2H, Ar-H), 7.21 (d, 1H, Ar-H), 7.08 (t, 2H, Ar-H), 6.63 (t, 1H, Ar-H), 6.50 (d, 2H, Ar-H), 4.47 (q, 1H, -NCH-), 4.02 (s, 1H, -NH), 1.50 (d, 3H, -CH₃). ¹³C NMR (100 MHz, CDCl₃): δ = 147.40, 145.37, 129.28, 128.82, 127.05, 126.02, 117.42, 113.48, 53.65, 25.23.

IR (KBr, cm⁻¹): 3411, 3052, 3022, 2965, 2923, 2866, 2572, 1601, 1504, 1449, 1372, 1317, 1257, 1179, 1139, 1076, 868, 748, 700, 608, 545, 510.

HRMS Calcd. for $C_{14}H_{15}N$: 197.1204. Found: 197.1204

3.2 N-(Hexan-3-yl)aniline

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.14$ (t, 2H, Ar-H), 6.63 (t, H, Ar-H), 6.56 (d, 2H, Ar-H), 3.42 (s, 1H, -NH), 3.28 (q, 1H, -NCH-), 1.48-1.35 (tdd, 6H, -CH₂-), 0.91 (dd, 6H, -CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta = 148.35$, 129.43, 116.65, 113.04, 53.97, 36.86, 27.43, 19.37, 14.43, 10.24.

IR(KBr, cm⁻¹):3406, 3084, 3052, 3019, 2959, 2931, 2872, 2571, 1912, 1602, 1505, 1462, 1428, 1380, 1320, 1274, 1154, 1032, 865, 746, 691, 507.

HRMS Calcd. for C₁₂H₁₉N: 177.1517.Found: 177.1514

3.3 N-(1,2-Diphenylethyl)aniline

Colorless oil.¹**H NMR (400 MHz, CDCl₃)**: $\delta = 7.30$ (t, 4H, Ar-H), 7.27–7.17 (m, 4H, Ar-H), 7.11 (d, 2H, Ar-H), 7.03 (t, 2H, Ar-H), 6.61 (t, 1H, Ar-H), 6.44 (d, 2H, Ar-H), 4.57 (t, 1H, -NCH-), 4.11 (s, 1H, -NH), 3.12 (dd, 1H, -CH₂-), 2.99 (dd, 1H, -CH₂-). ¹³C NMR (100MHz, CDCl₃): $\delta = 147.44$, 143.60, 137.85, 129.39, 129.21, 128.77, 128.73, 127.25, 126.91, 126.62, 117.65, 113.80, 59.37, 45.36.

IR (KBr, cm⁻¹): 3410, 3024, 2931, 2907, 2849, 1608, 1504, 1427, 1398, 1319, 1182, 1079, 1028, 868, 749, 697, 584, 514.

HRMS Calcd. for C₂₀H₁₉N: 273.1517. Found:273.1521

7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 fl(ppm)

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2011

3. 4 N-(2-Octyl)aniline

NH

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.16$ (t, 2H, Ar-H), 6.65 (t, 1H, Ar-H), 6.57 (d, 2H, Ar-H), 3.44 (dd, 2H, -NCH- and -NH), 1.54-1.28 (m, 10H, -(CH₂)₅-), 1.16 (d, 3H, CH₃), 0.88 (t, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta = 147.81$, 129.40, 116.85, 113.18, 48.58, 37.36, 32.01, 29.53, 26.29, 22.79, 20.91, 14.26.

IR (KBr, cm⁻¹): 3410, 3085, 3052, 3019, 2957, 2927, 2855, 2389, 2284, 1913, 1602, 1505, 1319, 1030, 993, 865, 746, 691, 507.

HRMS Calcd. for C14H23N: 205.1830. Found: 205.1830

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2011

3.5 4-bromo-N-(octan-2-yl)aniline

Colorless oil .¹**H NMR (400 MHz, CDCl₃)**: $\delta = 7.21$ (d, 2H, Ar-H), 6.43 (d, 2H, Ar-H), 3.45 (s, 1H, -NH-), 3.38 (dd, 1H, -NCH-), 1.55-1.29 (m, 10H, -(CH₂)₅-), 1.14 (d, 3H, -CH₃), 0.88 (t, 3H, -CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta = 146.79$, 132.04, 129.40, 114.69, 48.70, 37.18, 31.97, 29.47, 26.21, 22.77, 20.74, 14.26.

IR (KBr, cm⁻¹): 3410, 2923, 2855, 1594, 1500, 1465, 1398, 1257, 1178, 1158, 1114, 1074, 999, 968, 811, 747, 692, 646, 502.

HRMS Calcd. for C₁₄H₂₂BrN: 283.0936. Found:283.0938

3.6 N-(2-Octyl)-2,4-dichloroaniline

Colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.23$ (d, 1H, Ar-H), 7.07 (dd, 1H, Ar-H), 6.54 (d, 1H, Ar-H), 4.08 (s, 1H, -NH), 3.44 (s, 1H, -NCH), 1.66-1.40 (m, 2H, -CH₂), 1.37-1.25 (m, 8H, -(CH₂)₄-), 1.19 (d, 3H, -CH₃), 0.88 (t, 3H, -CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta = 142.29$, 128.86, 127.76, 120.32, 119.27, 112.08, 48.70, 37.00, 31.87, 29.39, 26.09, 22.72, 20.72, 14.20.

IR (KBr, cm⁻¹): 3420, 3074, 2958, 2928, 2856, 2296, 1853, 1596, 1504, 1460, 1322, 1264, 1162, 1045, 866, 800, 751, 655, 550, 437.

HRMS Calcd. for C₁₄H₂₁Cl₂N : 273.1051.Found:273.1049

3.7 N-(2-Octyl)-4-methoxyaniline

Llight yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.77$ (d, 2H, Ar-H), 6.56 (d, 2H, Ar-H), 3.74 (s, 3H, -OCH₃), 3.35 (dd, 1H, -NCH-), 3.27–2.83 (s, 1H, -NH), 1.55 (m, 2H, -CH₂), 1.37-1.25 (d, 8H, -(CH₂)₄-), 1.14 (d, 3H, -CH₃), 0.88 (t, 3H, -CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta = 151.93$, 141.86, 15.01, 114.89, 55.91, 49.73, 37.30, 31.97, 29.51, 26.27, 22.76, 20.81, 14.24.

IR(KBr, cm⁻¹): 3397, 2928, 2855, 2074, 1843, 1618, 1513, 1465, 1376, 1234, 1179, 1041, 818, 757, 518.

HRMS Calcd. for C₁₅H₂₅NO: 235.1936. Found:235.1942.

3.8 N-(2-Octyl)naphthalen-2-amine

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.61$ (d, 1H, Ar-H), 7.56 (d, 2H, Ar-H), 7.31 (t, 1H, Ar-H), 7.14 (t, 1H, Ar-H), 6.80 – 6.69 (m, 2H, Ar-H), 3.52 (dd, 2H,-NCH-and-NH), 1.43-1.26 (m, 10H, -(CH₂)₅-), 1.17 (d, 3H, CH₃), 0.87 (t, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta = 145.32$, 135.45, 129.02, 127.73, 126.35, 125.90, 121.77, 118.40, 104.76, 48.62, 37.13, 31.99, 29.51, 26.25, 22.79, 20.67, 14.26.

IR (KBr, cm⁻¹): 3407, 3051, 2957, 2931, 2855, 1901, 1629, 1603, 1522, 1484, 1398, 1263, 1224, 1189, 1145, 1018, 827, 743, 622, 470.

HRMS Calcd. for C₁₈H₂₅N: 255.1987. Found: 255.1985

3.9 N-(2-Octyl)-2-fluoroaniline

Colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.00$ (dd, 2H, Ar-H), 6.71 (t, 1H, Ar-H), 6.61 (dd, 1H, Ar-H), 3.72 (s, 1H-NH), 3.50 (d, 1H, -NCH), 1.62-1.33 (m, 10H, -(CH₂)₅-), 1.23 (d, 3H, -CH₃), 0.92 (d, 3H, -CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta = 143.58$, 129.35, 127.86, 119.10, 116.54, 111.60, 48.54, 37.18, 31.97, 29.48, 26.21, 22.79, 20.89, 14.27.

IR(KBr, cm⁻¹): 3420,3073,2959,2928,2856,1598,1512,1463,1324,1163,1033,739,439.

HRMS Calcd. for C₁₄H₂₂FN: 223.1736. Found: 223.1736.

