Supporting Information

Dramatic effect of modified boranes in diastereoselective reduction of chiral cyclic α -ketophosphinates

Damien Filippini,¹ Severine Loiseau,¹ Norbert Bakalara,² Zosia Anna Dziuganowska,^{1,3} Arie Van der Lee,⁴ Jean-Noël Volle,¹ David Virieux^{*1} and Jean-Luc Pirat^{*1}

¹ AM2N, UMR 5253, ICGM, ENSCM, 8, rue de l'école normale, 34296 Montpellier cedex 5, France. ² INSERM U-1051, Hôpital Saint Eloi, rue Augustin Fliche, BP 74103, 34091 Montpellier Cedex 5, France. ³ Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland.

Institut Éuropéen des membranes, cc047 Université de Montpellier 2, 34095, Montpellier, France.

Jean-luc.pirat@enscm.fr; david.virieux@enscm.fr

Table of contents

I.	General considerations	2
II.	General procedure for the synthesis of 3 and 4	2
	³¹ P NMR spectrum of a mixture of 3 and 4	3
	Preparative HPLC analysis of a mixture of compounds 3 and 4	4
	NMR ³¹ P, ¹ H, ¹³ C, HPLC preparative, X-ray and mass spectra of compound 3	6
	NMR ³¹ P, ¹ H, ¹³ C, HPLC preparative and mass spectra of compound 4	13
Ш	. Preparation of compound 7	19
	NMR ³¹ P, ¹ H, ¹³ C, HPLC preparative and mass spectra of compound 7	19
IV	. Diastereoselective reduction of the α -ketophosphinate 7	23
	Entry 1. NaBH ₄	23
	Entry 2. NaBH ₄ / (S.S)-tartric acid.	24
	Entry 3. NaBH ₄ / (R.R)-tartric acid	25
	Entry 4. NaBH ₄ / CeCl ₃ 7 H ₂ O	26
	Entry 5. NaBH ₄ / L-proline	29
	Entry 6. NaBH ₄ / D-proline	30
	Entry 7. NaBH ₄ / L-proline MgBr ₂	31
	Entry 8. NaBH ₄ / L-proline LiClO ₄	34
	Entry 9 NaBH ₄ / L-proline ZnCl ₂	37
	Entry 10. NaBH ₄ / L-proline CeCl ₃ 7 H ₂ O.	40
	Entry 11 NaBH ₄ / D-proline CeCl ₂ 7 H ₂ O	43

I. General Considerations

Melting points were measured on a Büchi B-540 apparatus and are uncorrected. All new compounds were characterized by ¹H NMR, ¹³C NMR and ³¹P NMR using a Bruker DRX 400 MHz NMR spectrometer or a Bruker Avance 250 MHz NMR spectrometer. All NMR experiments performed on phosphorus are indicated uncoupling of hydrogen and all studies led during processing were done with a DMSO-D₆ probe. High resolution mass spectra were measured on JEOL JMS–SX 102A spectrometer. Analytical HPLC (Column: Waters SunFireTM C18 5µ 4.6X250mm, Eluent: Acetonitrile/water (63:34), Flow: 1 mL.min⁻¹)

Materials: Before use, commercial reagents were purified by distillation or sublimation. 2,3,5-tri-*O*-benzyl-D-arabinofuranose was purchased from Carbosynth and dried under vacuum before use. All manipulations were carried out using standard Schlenck Techniques. Solvents were dried according to current methods, distilled and stored under nitrogen atmosphere. All reactions involving air or moisture sensitive reagents or intermediates were carried out under dry nitrogen in flame-dried glassware.

II. General procedure for the synthesis of 3 and 4

4,5-bis-benzyloxy-6-benzyloxymethyl-2-phenyl-2-oxo- $2\lambda^5$ -**[1,2]oxaphosphinan-3-ol (3) and (4).** Ethyl phenylphosphinate (1) was prepared by a known literature method (esterification of commercial phenylphosphinic acid).¹ 2,3,5-tri-*O*-benzyl-*D*-arabinofuranose **2** (21.00 g, 49 mmol) was added under nitrogen to a solution of ethyl phenylphosphinate (1, 8.50 g, 50 mmol) in THF (70 mL). Freshly sublimated potassium *tert*-butoxide (1.12 g 12 mmol) was added to the solution. Reaction mixture was stirred at room temperature for 15 h. After solvent evaporation under vacuum, chloroform (160 mL) was added to the crude oil. The organic solution was washed with a saturated solution of ammonium chloride (3 × 50 mL). The organic layer was dried over sodium sulfate, filtered off and solvent was evaporated under vacuum. The yellow oil residue containing a mixture of four diastereomers (25.7 g, 26/28/19/27) was dissolved in diethyl ether and a white precipitate was formed and filtered to give a mixture of **3/4** (6.35g, 48/52) as a white powder. After purification on Water Prep LC (Column: Waters SunFireTM C18, 8µm, 50×250 mm; Eluent: Acetonitrile/water (60:40); Flow: 17 mL.min⁻¹), compounds **3** and **4** were recovered pure, respectively.

The two diastereomers (3 and 4), after separation were fully characterized allowing the attribution of the complete stereochemistry of all the stereogenic centers. Compounds 3 and 4 are respectively epimer at the carbon center.

¹ K. Afarinkia, H.-W. Yu, Hewitt reaction revisited, *Tetrahedron Letters*, **2003**, *44* (4), 781-783.

 31 P NMR spectrum of a mixture of **3** and **4**.

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2011

Preparative HPLC analysis of a mixture of compounds 3 and

SampleName DEE055(mel)2_flow17iso60_2152010

Processed	Channel:	W2489	ChB	254nm
-----------	----------	-------	-----	-------

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	W2489 ChB 254nm	18,142	19900822	46,96	493963
2	W2489 ChB 254nm	21,548	22481146	53,04	526147

SampleName

DEE055(mel)2_flow17iso60_2152010

	SAMPLE	INFORMAT	ION
Sample Name: Sample Type: Vial: Injection #: Injection Volume:	Unknown 1 2 1000.00 ul	Acquired By: Date Acquired: Acq. Method Set: Date Processed: Processing Method:	System 21/05/2010 14:33:52 CEST Iso60_flow17_18052010 21/05/2010 15:50:15 CEST severine01_18052010
Run Time: Sample Set Name:	40,0 Minutes	Channel Name: Proc. Chnl. Descr.:	W2489 ChA W2489 ChA 214nm

SampleName DEE055(mel)2_flow17iso60_2152010

Processed Channel: W2489 ChA 214nm

		Processed Channel	Retention Time (min)	Area	% Area	Height
ſ	1	W2489 ChA 214nm	18,150	198498074	44,84	3197363
	2	W2489 ChA 214nm	21,552	244200199	55,16	3327480

(2S,3R,4S,5S,6R)-4,5-bis-benzyloxy-6-benzyloxymethyl-2-phenyl-2-oxo-2λ⁵-[1,2]oxaphosphinan-3-ol 3:

White powder

³¹P NMR (161.97 MHz, CDCl₃): δ (ppm) = 36.55 (s); ¹H NMR (400.13 MHz, CDCl₃): δ (ppm) = 2.67 (s, 1H, O<u>H</u>), 3.80 (dd, ²J_{HH} = -11.3 Hz, ³J_{HH} = 2.0 Hz, 1H, OC<u>H</u>₂), 4.00 (ddd, ²J_{HH} = 11.3 Hz, ⁴J_{PH} = 3.3 Hz, ³J_{HH} = 3.2 Hz, 1H, C<u>H</u>₂), 4.30 (dd, ³J_{HH} = 10.0 Hz, ³J_{HH} = 9.6 Hz, 1H, PCC<u>H</u>), 4.36 (ddd, ³J_{HH} = 9.6 Hz, ³J_{HH} = 2.8 Hz, 1H, PCC<u>H</u>), 4.43 (dd, ²J_{HP} = -3.5 Hz, ³J_{HH} = 2.8 Hz, 1H, PC<u>H</u>), 4.56 (dddd, ³J_{HH} = 10.0 Hz, ³J_{HH} = 3.3 Hz, ³J_{HP} = 3.2 Hz, ³J_{HH} = 2.0 Hz, 1H, POC<u>H</u>), 7.24-7.38 (m, 15H, CH_{Ar}), 7.48-7.54 (m, 2H, CH_{Ar}), 7.62-7.68 (m, 1H, CH_{Ar}), 7.96-8.03 (m, 2H, CH_{Ar}); ¹³C NMR (400,13 MHz, CDCl₃): δ (ppm) = 66.81 (d, ¹J_{CP} = 105.1 Hz, P<u>C</u>H), 68.91 (d, ³J_{CP} = 8.8 Hz, OC<u>C</u>H₂), 72.48 (s, Ph<u>C</u>H₂), 73.43 (s, Ph<u>C</u>H₂), 73.74 (d, J_{CP} = 2.2 Hz, <u>C</u>H), 75.46 (d, J_{CP} = 5.6 Hz, <u>C</u>H), 75.64 (s, Ph<u>C</u>H₂), 81.38 (d, ²J_{CP} = 2.9 Hz, PC<u>C</u>H), 126.53 (d, ¹J_{CP} = 138.8 Hz, P<u>C</u>_{Ph}), 127.68, 127.80, 127.84, 127.98, 128.19 (s, <u>C</u>H_{Bn}), 128.31 (d, ³J_{CP} = 13.4 Hz, <u>C</u>H_{Ph}), 128.42, 128.66 (s, <u>C</u>H_{Bn}), 132.99 (d, ²J_{CP} = 9.9 Hz, <u>C</u>H_{Ph}), 133.34 (d, ⁴J_{CP} = 2.8 Hz, <u>C</u>H_{Ph}), 137.32, 138.07, 138.09 (s, C_{Bn}); HRMS m/z (MH⁺) 545.2092 (calcd for C₃₂H₃₄O₆P: 545.2093); Analytical HPLC (Column: Waters SunFireTM C18, 5 µm 4.6×250 mm; Eluent: acetonitrile/water (63:37), Flow: 1 mL.min⁻¹): Retention time = 15.97. **[SP**]^S = +13.48 (c 0.0445, CHCl₃). HRMS m/z (MH⁺) 545.2091 (calcd for C₃₂H₃₄O₆P: 545.2093); Analytical HPLC (Column: Waters SunFireTM C18, 5 µm 4.6×250 mm; Eluent: acetonitrile/water (63:37), Flow: 1 mL.min⁻¹): Retention time = 15.97. **[SP**]^S = +13.48 (c 0.0445, CHCl₃). HRMS m/z (MH⁺) 545.2091 (calcd for C₃₂H₃₄O₆P: 545.2093); Analytical HPLC (Column: Waters SunFireTM C18, 5 µm 4.6×250 mm; Eluent: acetonitrile/water (63:37); Flow: 1 mL.min⁻¹): Retention time = 15.97.

Suitable crystals for X-ray analysis were obtained in Et₂O/CH₂Cl₂ for compound **3** (CCDC 848920). According to the ORTEP structure, we were able to assign the absolute configuration of the newly created asymmetric centers of the diastereomer 3. Compound 3 shows a chair structure with $P_2(S)$ and $C_3(R)$ configuration [Crystal data for compound **3**: Formula= $C_{32}H_{33}O_6P$, T = 175 K, $M_r = 544.55$ gmol⁻¹, crystal size = $0.100 \times 0.500 \times 0.500 \text{ mm}^3$, monoclinic, space group P21, a = 15.6590(3), b = 5.6930(1), c = 15.8108(3)Å, $\alpha = 90^{\circ}$, $\beta = 91.3777(16)^{\circ}$, $\gamma = 90^{\circ}$, $V = 1409.07(5)^{\circ}$ Å³, Z = 2, $\rho_{cald} = 1.283$ gcm⁻³, $\mu = 1.221$ mm⁻¹, $\theta_{max} = 1.221$ mm⁻¹, $\theta_{max} = 1.221$ mm⁻¹, $\theta_{max} = 1.221$ mm⁻¹, $\theta_{max} = 1.283$ gcm⁻³, $\mu = 1.283$ gcm⁻³, 66.187°, 13913 reflections measured, 4543 unique, 4074 with $I > 2\sigma(I)$, $R_{int} = 0.031$, $\langle \sigma(I)/I \rangle = 0.0384$, refined parameters = 353, $R_1(I \ge 2\sigma(I)) = 0.0388$, $wR_2(I \ge 2\sigma(I)) = 0.1001 R_1$ (all data) = 0.0436, wR_2 (all data) = 0.1049, GOF = 0.9297, $\Delta \rho(\min/\max)$ = -0.26/0.25 eÅ⁻³. Cu radiation was used in order to have a more reliable estimate of the Flack and Hooft parameters. Charge flipping as implemented in Superflip (Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786-790) was used to solve the structure and least-squares from CRYSTALS (Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K.; Watkin, D. J. J. Appl. Crystallogr., 2003, 36, 1487) to refine the structure. The Flack parameter was refined to 0.07(2) and the Hooft parameter determined to be 0.08(1). The chance that the correct hand was assigned in the twohypotheses model of an enantiopure material is 100%. (R. W. W. Hooft, L. H. Straver, A. L. Spek, J. Appl. Cryst. 41 2008, 96-103)].

The oxidation of the two diastereomers **3** and **4**, with Dess-Martin reagent afforded the same stereoisomer of α -ketophosphinate **7**, demonstrating that compounds **3** and **4** are epimers at the carbon atom, α to the phosphorus atom. Furthermore, the vicinal coupling constant ¹H NMR data showed: a trans di-axial vicinal coupling constants between protons H₂/H₃ ($J_{H2-H3} = 9.6$ Hz) and protons H₃/H₄ ($J_{H3-H4} = 10.0$ Hz) and a cis axial-equatorial vicinal coupling constant between protons H₁/H₂ ($J_{H1-H2} = 2.8$ Hz) confirming that in solution the major conformer is similar to those observed by X-ray.

³¹P NMR – CDCl₃

¹H NMR – CDCl₃

Zoom in proton NMR with Gaussian Fourrier transformation (LB = -1 and GB = 10%)

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2011

¹³C NMR – CDCl₃

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2011

Analytical HPLC

==== Shimadzu LCsolution Analysis Report ====

C:\LabSolutions\Data\Project1\Delphine\semi prep vial 1 21052010.lcd

			1	PeakTable	
PDA Ch1 2	54nm 4nm				
Pic	Temps rét.	Hauteur	Aire	% Hauteur	Area %
1	15.971	95583	1813225	100.000	100.000
Total		95583	1813225	100.000	100.000

C:\LabSolutions\Data\Project1\Delphine\semi prep vial 1 21052010.lcd

Elemental Composition Report

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = 0.0, max = 100.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons 59 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

Q-TOF y-jp11021623 \$	9 (0.171) Cn (Cen	,4, 80.00, Ar); Si	m (SG, 10x1	DF080 / M .00); Cm (5:11)	mono = 544.20	0			545.	2092	16-FEB-2011 TOF MS ES+ 3.25e3
%										546 2125	
	490.8	923								540.2125	
476.1705	489.1548	492.9163 50	05.9726507.	9358509.9939 (519.1483	528.8721	533.	3166 \$	544.8297	547.2437	559.2261
480.0	490.0	500.	0	510.0	520.0	530.0		54	0.0	550.0	560.0
Minimum: Maximum:		3.0	5.0	0.0 100.0							
Mass	Calc. Mass	mDa	PPM	DBE	Score	Form	ıla				
545.2092	545.2093	-0.1	-0.2	16.5	1	C32	H34	06	P		

White powder

³¹P NMR (161.97 MHz, CDCl₃): δ (ppm) = 36.08 (s); ¹H NMR (400.13 MHz, CDCl₃): 3.69 (dd, ²J_{HH} = -11.1 Hz, ³J_{HH} = 2.3 Hz, 1H, C<u>H</u>₂); 3.88 (ddd, ²J_{HH} = 11.1 Hz, ³J_{HH} = 2.74 Hz, ⁴J_{PH} = 2.6 Hz, 1H, C<u>H</u>₂); 3.90 (dd, ³J_{HH} = 9.5 Hz, ³J_{HH} = 9.3 Hz, 1H, PCC<u>H</u>); 3.93 (dd, ³J_{HH} = 9.8 Hz, ²J_{PH} = -1.9 Hz, 1H, PC<u>H</u>); 4.10 (ddd, ³J_{HH} = 9.8 Hz, ³J_{HH} = 9.5 Hz, ³J_{PH} = 2.6 Hz, 1H, PCC<u>H</u>); 4.46 (dddd, ³J_{HH} = 9.8 Hz, ³J_{PH} = 3.1 Hz, J_{HH} = 2.7 Hz, ³J_{HH} = 2.3 Hz, 1H, POC<u>H</u>); 4.46 (d, ²J_{HH} = -12.1 Hz, 1H, PhC<u>H</u>₂); 4.54 (d, ²J_{HH} = -12.1 Hz, 1H, PhC<u>H</u>₂); 4.59 (d, ²J_{HH} = -10.8 Hz, 1H, PhC<u>H</u>₂); 4.83 (d, ²J_{HH} = -11.1 Hz, 1H, PhC<u>H</u>₂); 4.84 (d, ²J_{HH} = -10.8 Hz, 1H, PhC<u>H</u>₂); 7.38-7.43 (m, 15H, CH_{Ar}); 7.50-7.55 (m, 3H, CH_{Ar}); 7.75-7.80 (m, 2H, CH_{Ar}); ¹³C NMR (400,13 MHz, CDCl₃): δ (ppm) = 68.64 (d, ³J_{CP} = 9.2 Hz, OC<u>C</u>H₂), 72.19 (d, ¹J_{CP} = 97.3 Hz, P<u>C</u>H), 73.45 (s, Ph<u>C</u>H₂), 75.24 (d, ²J_{CP} = 5.2 Hz, PO<u>C</u>H), 75.50 (s, Ph<u>C</u>H₂), 76.25 (s, Ph<u>C</u>H₂), 77.65 (s, PCC<u>C</u>H), 84.34 (d, ²J_{CP} = 6.9 Hz, PC<u>C</u>H), 127.65, 127.76, 127.82, 127.84, 128.15,128.45 (s, CH_{Bn}), 127.49 (d, ¹J_{CP} = 135.8 Hz, P<u>C</u>_{Ph}), 138.71 (d, ³J_{CP} = 13.4 Hz, <u>C</u>_{HPh}), 131.91 (d, ²J_{CP} = 10.4 Hz, <u>C</u>_{HPh}), 133.30 (d, ⁴J_{CP} = 2.8 Hz, <u>C</u>_{Ph}), 137.92 (s, C_{Bn}), 137.98 (s, C_{Bn}), 138.37 (s, C_{Bn}); HRMS m/z (MH⁺) 545.2091 (calcd for C₃₂H₃₄O₆P: 545.2093); Analytical HPLC (Column: Waters SunFireTM C18, 5 µm, 4.6×250 mm; Eluent: acetonitrile / water (63:37), Flow: 1 mL.min⁻¹): Retention time = 18.53.

The ¹H NMR data of compound **4**, epimer of compound **3**, showed trans di-axial vicinal coupling constants between protons H_2/H_3 ($J_{H2-H3} = 9.5$ Hz), protons H_3/H_4 ($J_{H3-H4} = 9.3$ Hz) and protons H_1/H_2 ($J_{H1-H2} = 9.8$ Hz) who confirmed a chair structure with $P_2(S)$ and $C_3(S)$ configuration for compound **4**.

³¹P NMR – CDCl₃

¹H NMR – CDCl₃

¹³C NMR – CDCl₃

ES+-MS

HRMS

Elemental Composition Report

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -10.0, max = 100.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons 36 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

Page 1

Total

Analytical HPLC

==== Shimadzu LCsolution Analysis Report ====

C:\LabSolutions\Data\Project1\Delphine\semi prep vial 2 21052010.lcd

100.000

100.000

]	PeakTable	
PDA Ch1 2	54nm 4nm				
Pic	Temps rét.	Hauteur	Aire	% Hauteur	Area %
1	18.529	35833	778565	100.000	100.000
Total		35833	778565	100.000	100.000

C:\LabSolutions\Data\Project1\Delphine\semi prep vial 2 21052010.lcd

Preparation of (R_P) -4,5-bis-benzyloxy-6-benzyloxymethyl-2-phenyl-2-oxo- $2\lambda^5$ -[1,2]oxaphosphinan-3-one 7:

Dess-Martin periodinane (0.956 g, 2.25 mmol) and *tert*-butanol (0.167 g, 0.215 mL, 2.250 mmol) were added to a solution of a mixture of 3/4 (40/60, 0.408 g, 0.750 mmol) in dichloromethane (20 mL). The reaction mixture was stirred at room temperature for 6 h, and then dichloromethane (10 mL) was added. The reaction mixture was filtrated through celite, organic layer was washed with an aqueous solution of sodium sulfite (20 mL, 20%), followed by an aqueous solution of carbonate sodium (20 mL, 20%). The organic layer was dried over magnesium sulfate and filtered. The solvent was evaporated to give an oil (0.4 g, 89%, which was used directly without further purification.

³¹P NMR (161.97 MHz, CDCl₃): δ (ppm): 23.64 (s); ¹H NMR (400.13 MHz, CDCl₃): 4.18 (t, ³*J*_{HH} = 9.6 Hz, 1H, PCCC<u>H</u>); HRMS m/z (MH⁺) 543.1934 (calcd for C₃₂H₃₂O₆P: 543.1937).

The ¹H NMR data of compound 7, showed trans di-axial vicinal coupling constants between protons H_3/H_2 ($J_{H3-H2} = 9.6 \text{ Hz}$) and protons H_3/H_4 ($J_{H3-H4} = 9.6 \text{ Hz}$) which confirmed a chair structure for compound 7.

³¹P NMR spectrum of 7.

¹H NMR spectrum of **7**.

SELO-057-protondecP31-CDCl3PROP31DEC CDCl3 opt/topspin am2n1 5

¹H NMR spectrum of 7 (Proton with Phosphorus decoupling).

SELO-057-protondecP31-CDCl3PROP31DEC CDCl3 opt/topspin am2n1 5

¹³C NMR spectrum of **7**.

HRMS of 7

Element	al Com	positio	on Repo	rt							Page
Single M Toleranc	lass An e = 3.0	alysis mDa	/ DBE:	min = -10	.0, max =	100.0	00/				
isotope c	auster p	arame	ters: Sep	paration =	1.0 Abu	ndance = 1	.0%				
Monoisotor 574 formul	pic Mass, a(e) evalu	Odd an uated wit	d Even Ele th 5 result	ectron lons s within limit	s (all result	s (up to 1000)	for each	n mas	s)		
Q-TOF Y-JP0206100	2 378 (4.0	54) Cn (Ci	en,4, 80.00,	(Ar); Sm (SG, 3	DF 270 / Mmor (x1.00); Cm (3	no = 542.18 78:411)					2-JUN-20 TOF MS ES
100	543.	1934 -									588.8692 2.23
	1999										
*	1.22										
%-					561.2071						
		544.199	2		562.20	71					589.2404
54	1.1983	545.1	982 551.	1375559.1964	563.	2238 566.7833	577	21515	79.224	7587.247	592.0252
0	540.0	545.0	550.0	555.0 5	60.0 565	5.0 570.0	575.0	58	0.0	585.0	590.0 m
Minimum: Maximum:			3.0	5.0	-10.0 100.0						
Mass	Calc.	Mass	mDa	PPM	DBE	Score	Form	ula			
543.1934	543.19	913	2.1	3.9	8.5	1	C25	H37	09	P2	
	543.19	959	-2.5	-4.7	3.5	2	C22	H43	07	P4	
	2543.19	337	-0.3	-0.5	17.5	3	C32	H32	06	Po	
	543.19	23	1.1	2.0	-1.5	4	C19	H50	03	P7	
(1) (年)	543.19	936	-0.2	-0.3	-5.5	5	C15	H48	010	P5	

MS ES+ of 7

IV. Diastereoselective reduction of the α -ketophosphinate <u>7</u>

Entry 1. NaBH₄

Sodium borohydride (16.8 mg, 0.442 mmol) was added to a solution of 7 (0.200 g, 0.368 mmol) in THF (8 mL). The reaction mixture was stirred for 5 h, and then solvent was evaporated. The residue remaining was diluted with ethyl acetate (15 mL) and organic solution was washed with a saturated aqueous solution of sodium carbonate (10 mL). The organic layer was dried over magnesium sulfate, filtered and concentrated under vacuum to give yellow oil.

³¹P NMR (161.97 MHz, CDCl₃): δ (ppm): 37.00 (s), 36.24 (s).

³¹P NMR spectrum of **3** and **4**: Table 1, entry 1. NaBH₄

Entry 2. NaBH₄/(S,S)-tartric acid

Sodium borohydride (56.2 mg, 1.48 mmol,) was added to a solution of (*S*,*S*)-tartaric acid (0.222 g, 1.48 mmol) in THF (8 mL). The reaction mixture was stirred to reflux for 4 h. At -30 °C, a solution of α -ketophosphinate (0.200 g, 0.37 mmol) in THF (2 mL) was added and the mixture was stirred for 24h at - 30 °C. The solvent was evaporated and the residue remaining was diluted with ethyl acetate (15 mL). The organic solution was washed with an aqueous solution of hydrochloride (10 mL, 1M). The organic layer was dried over magnesium sulfate, filtered and concentrated under vacuum to give yellow oil.

³¹P NMR (161.97 MHz, CDCl₃): δ (ppm): 38.17 (s), 37.94 (s).

³¹P NMR spectrum of **3** and **4**: Table 1, entry 2. NaBH₄/(S,S)-tartric acid.

Entry 3. NaBH₄/(*R*,*R*)-tartric acid

Sodium borohydride (56.2 mg, 1.48 mmol,) was added to a solution of (*R*,*R*)-tartaric acid (0.222 g, 1.48 mmol,) in THF (8 mL). The reaction mixture was stirred to reflux for 4 h. At - 30 °C, a solution of α -ketophosphinate (0.200 g, 0.37 mmol,) in THF (2 mL) was added and the mixture was stirred for 24h at - 30 °C. The solvent was evaporated and the residue remaining was diluted with ethyl acetate (15 mL). The organic solution was washed with an aqueous solution of hydrochloride (10 mL, 1M). The organic layer was dried over magnesium sulfate, filtered and concentrated under vacuum to give yellow oil.

³¹P NMR (161.97 MHz, CDCl₃): δ (ppm): 37.38 (s), 36.46 (s).

³¹P NMR spectrum of **3** and **4**: Table 1, entry 3. NaBH₄/(R,R)-tartric acid.

Entry 4. NaBH₄/CeCl₃.7 H₂O

Sodium borohydride (8.2 mg, 0.22 mmol) was added to a solution of ketophosphinosugar (0.100 g, 0.18 mmol) and cerium (III) chloride heptahydrate (60.6 mg, 0.162 mmol) in THF (5 mL). The reaction mixture was stirred for 48h at room temperature, and then the solvent was evaporated. The residue remaining was diluted with dichloromethane (10 mL) and the organic solution was washed with an aqueous saturated solution of ammonium chloride (5 mL). The organic layer was dried over magnesium sulfate, filtrated and concentrated under vacuum to give yellow oil.

³¹P NMR (161.97 MHz, CDCl₃): δ (ppm): 36.42 (s). Analytical HPLC (Column: Waters SunFireTM C18, 5µm, 4.6×250 mm; Eluent: acetonitrile/water (63:37); Flow: 1 mL.min⁻¹): Retention time = 16.35 (95%), 19.02 (5%).

³¹P NMR spectrum of **3** and **4**: Table 1, entry 4. NaBH₄/CeCl₃.7H₂O.

HPLC chromatogram of $\mathbf{3}$ and $\mathbf{4}$: Table 1, entry 4. NaBH₄ / CeCl₃,7 H₂O

C:\...\Data\Project1\SEVERINE\SELO044-BRUT48H-13012011.lcd

Acquired by	: Admin
Sample Name	: SELO044-BRUT48H-13012011
Sample ID	: SELO044-BRUT48H-13012011
Tray#	:1
Vaiĺ #	: 21
Injection Volume	: 20 uL
Data File Name	: SELO044-BRUT48H-13012011.lcd
Method File Name	: isocratique 63-C- 25 min.lcm
Batch File Name	: 13012011-SELO044-brut48h-63C-1.lcb
Report File Name	: delphine report.lcr
Data Acquired	: 13/01/2011 11:04:06
Data Processed	: 15/02/2011 13:58:10

			Peak	Table	
PDA Ch2 2	l4nm 4nm				
Pic	Temps ret.	Hauteur	Aire	Hauteur %	Aire %
1	16.351	1262542	29487300	94.844	95.040
2	19.028	68637	1539025	5.156	4.960
Total		1331179	31026326	100.000	100.000

C:\LabSolutions\Data\Project1\SEVERINE\SELO044-BRUT48H-13012011.lcd

PDA Ch1 254nm 4nm

$n \operatorname{cm} z$					
Pic	Temps rét.	Hauteur	Aire	% Hauteur	Area %
1	16.351	49378	1084069	95.320	95.140
2	19.023	2424	55379	4.680	4.860
Total		51802	1139448	100.000	100.000

PeakTable

C:\LabSolutions\Data\Project1\SEVERINE\SELO044-BRUT48H-13012011.lcd

Entry 5. NaBH₄/L-proline

Sodium borohydride (21.1 mg, 0.55 mmol) was added to a solution of *L*-proline (63.9 mg, 0.55 mmol,) in THF (4 mL). The reaction mixture was stirred at room temperature for 60 h, and then a solution of α -ketophosphinate (0.200 g, 0.37 mmol) in THF (1.2 mL) was added. The mixture was stirred for 48 h at room temperature and solvent was evaporated. The residue remaining was diluted with dichloromethane (20 mL) and organic solution was washed with a saturated aqueous solution of ammonium chloride (10 mL). The organic layer was dried over magnesium sulfate, filtered and concentrated under vacuum to give yellow oil.

³¹P NMR (161.97 MHz, CDCl₃): δ (ppm): 36.42 (s)

³¹P NMR spectrum of **3** and **4**: Table 1, entry 5. NaBH₄/*L*-proline.

Entry 6. NaBH₄/D-proline

Sodium borohydride (0.55 mmol, 21.1 mg) was added to a solution of *D*-proline (63.9 mg, 0.55 mmol) in THF (4 mL). The reaction mixture was stirred at room temperature for 60 h, and then a solution of α -ketophosphinate (0.37 mmol, 0.200 g) in THF (1.2 mL) was added. The reaction mixture was stirred for 48 h at room temperature and solvent was evaporated. The residue remaining was diluted with dichloromethane (20 mL) and organic solution was washed with a saturated aqueous solution of ammonium chloride solution (10 mL). The organic layer was dried over magnesium sulfate, filtered and concentrated under vacuum to give yellow oil.

³¹P NMR (161.97 MHz, CDCl₃): δ (ppm): 36.83 (s), 36.54 (s).

³¹P NMR spectrum of **3** and **4**: Table 1, entry 6. NaBH₄/*D*-*proline*.

Entry 7. NaBH₄/L-proline/MgBr₂

Sodium borohydride (20.0 mg, 0.525 mmol) was added to a solution of *L*-proline (60.4 mg, 0.525 mmol) in THF (4 mL). The reaction mixture was stirred at room temperature for 60 h, and then a solution of α -ketophosphinate (0.375 mmol, 0.203 g) and magnesium bromide ethyl etherate (0.375 mmol, 97.0 mg) in THF (1.2 mL) was added. The reaction mixture was stirred for 48 h at room temperature and solvent was evaporated. The residue remaining was diluted with dichloromethane (20 mL) and organic solution was washed with a saturated aqueous solution of ammonium chloride (10 mL). The organic layer was dried over magnesium sulfate, filtered and concentrated under vacuum to give yellow oil.

³¹P NMR (161.97 MHz, CDCl₃): δ (ppm): 37.46 (s), 37.26 (s); Analytical HPLC (Column: Waters SunFireTM, C18, 5 µm, 4.6×250 mm; Eluent: acetonitrile/water (63:37); Flow: 1 mL.min⁻¹): Retention time = 16.68 (13%), 19.46 (87%).

³¹P NMR spectrum of **3** and **4**: Table 1, entry 7. NaBH₄/*L*-proline/MgBr₂

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2011

HPLC chromatogram of **3** and **4**: Table 1, entry 7. NaBH₄/*L*-proline MgBr₂

==== Shimadzu LCsolution Analysis Report ====

C:\...\Damien\Analyse reduction diaselect\DF278-63C-20100930-1.lcd

Acquired by	: Admin
Sample Name	: DF278-63C-20100930
Sample ID	: DF278-63C-20100930
Tray#	:1
Vail #	: 46
Injection Volume	: 20 uL
Data File Name	: DF278-63C-20100930-1.lcd
Method File Name	: isocratique 63-C- 30 min.lcm
Batch File Name	: 30092010-Analyses dia278-279-1.lcb
Report File Name	: delphine report.lcr
Data Acquired	: 30/09/2010 14:48:53
Data Processed	: 15/02/2011 14:08:56

1 PDA Multi 1 / 254nm 4nm

Chromatogram DF278-63C-20100930 C:\LabSolutions\Data\Project1\Damien\Analyse reduction diaselect\DF278-63C-20100930-1.lcd

PDA Ch2

PeakTable

PDA Ch1 254nm 4nm

2

Total

Temps rét.

16.678

19.459

Pic

Hauteur 33304

186609

219912

PeakTable

% Hauteur

15.144

84.856

100.000

Area %

13.050

86.950

100.000

Aire

651184

4338793

4989977

C:\LabSolutions\Data\Project1\Damien\Analyse reduction diaselect\DF278-63C-20100930-1.lcd

36

Entry 8. NaBH₄/L-proline/LiClO₄

Sodium borohydride (20.0 mg, 0.525 mmol) was added to a solution of *L*-proline (60.4 mg, 0.525 mmol) in THF (4 mL). The reaction mixture was stirred at room temperature for 60 h, and then a solution of α -ketophosphinate (0.203 g, 0.375 mmol) and lithium perchlorate (0.375 mmol, 40 mg) in THF (1.2 mL) was added. The reaction mixture was stirred for 48 h at room temperature and solvent was evaporated. The residue remaining was diluted with dichloromethane (20 mL) and organic solution was washed with a saturated aqueous solution of ammonium chloride (10 mL). The organic layer was dried over magnesium sulfate, filtered and concentrated under vacuum to give yellow oil.

³¹P NMR (161.97 MHz, CDCl₃): δ (ppm): 36.86 (s), 36.26 (s); Analytical HPLC (Column: Waters SunFireTM C18, 5 µm, 4.6×250 mm; Eluent: acetonitrile/water (63:37); Flow: 1 mL.min⁻¹): Retention time = 15.92 (12%), 18.48 (88%).

³¹P NMR spectrum of **3** and **4**: Table 1, entry 8. NaBH₄/*L*-proline/LiClO₄

HPLC chromatogram of 3 and 4: Table 1, entry 8. NaBH₄/L-proline/LiClO₄

==== Shimadzu LCsolution Analysis Report ====

I DA CIIZ Z							
Pic	Temps ret.	Hauteur	Aire	Hauteur %	Aire %		
1	15.926	57440	1076651	14.104	12.379		
2	18.483	349813	7620754	85.896	87.621		
Total		407253	8697405	100.000	100.000		

C:\LabSolutions\Data\Project1\Damien\Synthese diaselect\DF237_isocratique 63-C- 20 min.lcd

			1	PeakTable	
PDA Ch1 2	54nm 4nm				
Pic	Temps rét.	Hauteur	Aire	% Hauteur	Area %
1	15.926	2007	37081	13.553	11.587
2	18.483	12804	282951	86.447	88.413
Total		14811	320032	100.000	100.000

C:\LabSolutions\Data\Project1\Damien\Synthese diaselect\DF237_isocratique 63-C- 20 min.lcd

Entry 9. NaBH₄/L-proline/ZnCl₂

Sodium borohydride (20.0 mg, 0.525 mmol) was added to a solution of *L*-proline (60.4 mg, 0.525 mmol) in THF (4 mL). The reaction mixture was stirred at room temperature for 60 h, and then a solution of α -ketophosphinate (0.375 mmol, 0.203 g) and zinc chloride (0.375 mmol, 51 mg) in THF (1.2 mL) was added. The reaction mixture was stirred for 48 h at room temperature and solvent was evaporated. The residue remaining was diluted with dichloromethane (20 mL) and organic solution was washed with a saturated aqueous solution of ammonium chloride (10 mL). The organic layer was dried over magnesium sulfate, filtered and concentrated under vacuum to give yellow oil.

³¹P NMR (161.97 MHz, CDCl₃): δ (ppm): 36.80 (s), 36.19 (s); Analytical HPLC (Column: Waters SunFireTM C18, 5 µm, 4.6×250 mm; Eluent: acetonitrile/water (63:37); Flow: 1 mL.min⁻¹): Retention time = 15.91 (12%), 18.47 (88%).

³¹P NMR spectrum of **3** and **4**: Table 1, entry 9. NaBH₄/*L*-proline/ZnCl₂

HPLC chromatogram of **3** and **4**: Table 1, entry 9. NaBH₄/L-proline/ZnCl₂

==== Shimadzu LCsolution Analysis Report ====

C:\\Damien\Synthese	e diaselect\DF241_isocratique 63-C- 20 min.lcd
Acquired by	: Admin
Sample Name	: DF241
Sample ID	
Tray#	:1
Vail #	: 57
Injection Volume	: 20 uL
Data File Name	: DF241_isocratique 63-C- 20 min.lcd
Method File Name	: isocratique 63-C- 20 min.lcm
Batch File Name	: Synthese diastereoselective Batch1 lcb
Report File Name	: Default.lcr
Data Acquired	: 18/05/2010 16:26:32
Data Processed	: 18/05/2010 17:51:05

Total

100.000

PDA Ch2 2	14nm 4nm		Peak	Table	
Pic	Temps ret.	Hauteur	Aire	Hauteur %	Aire %
1	15.913	37023	714353	13.326	12.2
2	18 472	240704	5127102	86 674	97 2

5851552

277816

C:\LabSolutions\Data\Project1\Damien\Synthese diaselect\DF241_isocratique 63-C- 20 min.lcd

100.000

]	PeakTable			
PDA Ch1 2	DA Ch1 254nm 4nm						
Pic	Temps rét.	Hauteur	Aire	% Hauteur	Area %		
1	15.911	1309	25945	12.889	11.873		
2	18.473	8850	192579	87.111	88.127		
Total		10160	218523	100.000	100.000		

C:\LabSolutions\Data\Project1\Damien\Synthese diaselect\DF241_isocratique 63-C- 20 min.lcd

Entry 10. NaBH₄/L-proline/CeCl₃.7 H₂O

Sodium borohydride (20.0 mg, 0.525 mmol) was added to a solution of *L*-proline (60.4 mg, 0.525 mmol) in THF (4 mL). The reaction mixture was stirred at room temperature for 60 h, and then a solution of α -ketophosphinate (0.375 mmol, 0.203 g) and cerium (III) chloride heptahydrate (0.375 mmol, 140 mg) in THF (1.2 mL) was added. The mixture was stirred for 48 h at room temperature and solvent was evaporated. The residue remaining was diluted with dichloromethane (20 mL) and organic solution was washed with a saturated aqueous solution of ammonium chloride (10 mL). The organic layer was dried over magnesium sulfate, filtrated and concentrated under vacuum to give yellow oil.

³¹P NMR (161.97 MHz, DMSO-d6): δ (ppm): 38.79 (s), 35.85 (s); Analytical HPLC (Column: Waters SunFireTM C18, 5 μm 4.6×250 mm, Eluent: acetonitrile/water (63:37); Flow: 1 mL.min⁻¹): Retention time = 16.26 (7%), 18.96 (93%).

³¹P NMR spectrum of **3** and **4**: Table 1, entry 10. NaBH₄/*L*-proline/CeCl₃.7 H₂O

HPLC chromatogram of 3 and 4: Table 1, entry 10. $NaBH_4/L$ -proline/CeCl₃.7 H₂O

PDA Ch2 2	14nm 4nm				
Pic	Temps ret.	Hauteur	Aire	Hauteur %	Aire %
1	16.263	263436	5655557	12.603	9.476
2	18.958	1826784	54029712	87.397	90.524
Total		2090220	59685269	100.000	100.000

C:\LabSolutions\Data\Project1\SEVERINE\SELO046-BRUT48H-20012011-1.lcd

PDA Ch1 254nm 4nm						
Pic	Temps rét.	Hauteur	Aire	% Hauteur	Area %	
1	16.264	9040	194293	8.418	7.416	
2	18.958	98351	2425708	91.582	92.584	
Total		107391	2620000	100.000	100.000	

PeakTable

C:\LabSolutions\Data\Project1\SEVERINE\SELO046-BRUT48H-20012011-1.lcd

Entry 11. NaBH₄/D-proline/CeCl₃.7 H₂O

Sodium borohydride (20.0 mg, 0.525 mmol) was added to a solution of *D*-proline (60.4 mg, 0.525 mmol) in THF (4 mL). The reaction mixture was stirred at room temperature for 60 h, and then a solution of α -ketophosphinate (0.375 mmol, 0.203 g) and cerium (III) chloride heptahydrate (0.375 mmol, 140 mg) in THF (1.2 mL) was added. The mixture was stirred for 48 h at room temperature and solvent was evaporated. The residue remaining was diluted with dichloromethane (20 mL) and organic solution was washed with a saturated aqueous solution of ammonium chloride (10 mL). The organic layer was dried over magnesium sulfate, filtrated and concentrated under vacuum to give yellow oil.

³¹P NMR (161.97 MHz, DMSO-d6): δ (ppm): 38.77 (s), 35.84 (s); Analytical HPLC (Column: Waters SunFireTM C18, 5 μm 4.6×250 mm, Eluent: acetonitrile/water (63:37); Flow: 1 mL.min⁻¹): Retention time = 16.26 (7%), 18.96 (93%).

³¹P NMR spectrum of **3** and **4**: Table 1, entry 11. NaBH₄/*D*-proline/CeCl₃.7 H₂O

SELO-059-2-DMSO-P31CPDP31CPD DMSO opt/topspin am2n1 4

Data Acquired

Data Processed

==== Shimadzu LCsolution Analysis Report ====

C:\LabSolutions\Data\Project1\SEVERINE\SELO059-18112011-1.lcd Acquired by Admin selo059-18112011-1 selo059-18112011-1 Sample Name Sample ID Tray# 1 18 Vail # Injection Volume 20 uL Data File Name SEL0059-18112011-1.lcd isocratique 63-C- 25 min.lcm 18112011-SELO059-48h-63C-1.lcb Method File Name Batch File Name Report File Name delphine report.lcr

18/11/2011 15:35:12

: 18/11/2011 16:03:25

Daal-Tabla

1 PDA Multi 2/ 214nm 4nm

			1 Can	1 dUK	
PDA Ch2 2	14nm 4nm				
Pic	Temps ret,	Hauteur	Aire	Hauteur %	Aire %
1	16,033	84940	1745518	11.982	10,722
2	18,574	623984	14534831	88,018	89,278
Total		708924	16280349	100.000	100.000

C:\LabSolutions\Data\Project1\SEVERINE\SELO059-18112011-1.lcd

PDA Ch1 2	54nm 4nm		I	PeakTable	
Pic	Temps rét.	Hauteur	Aire	% Hauteur	Area %
1	16,028	2882	59941	11.322	10,217
2	18,575	22570	526726	88,678	89.783
Total		25452	586667	100,000	100,000

C:\LabSolutions\Data\Project1\SEVERINE\SELO059-18112011-1.lcd