Electric Supplementary Information for the article entitled

Synthesis and fluorescence properties of N-methyl-1,2-dihyroquinoline-3-carboxylate derivatives: Light-emitting compounds in organic solvent, in neat form, and in water

Shoji Matsumoto,* Takahiro Mori, and Motohiro Akazome

Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoicho, Inageku, Chiba 263-8522, Japan

Corresponding author information

Tel: +81-43-290-3369, Fax: +81-43-290-3401

E-mail address: smatsumo@faculty.chiba-u.jp

Table of Contents

1	Experimental procedure and characterization data for 3a-f, 2a-f, 4a, 4d, and 4f.	S2
2	¹ H and ¹³ C NMR spectra of 3a-f , 2a-f , 4a , 4d , and 4f .	S8
3	Summary of TD-DFT calculation with B3LYP/6-31+G*.	S23
3	References	S24

General Infromation: Melting points were determined with Yanaco MP-J3 and values were uncorrected. ¹H and ¹³C NMR measurements were performed on a Varian GEMINI 2000 (300 MHz) spectrometer. Chemical shifts (δ) of ¹H NMR were expressed in parts per million downfield from tetramethylsilane ($\delta = 0$) or DMSO- d_5 ($\delta = 2.49$) as an internal standard. Multiplicities are indicated as s (singlet), bs (broadened singlet), d (doublet), t (triplet), m (multiplet), and coupling constants (J) are reported in Hz unit. Chemical shifts (δ) of ¹³C NMR (75 MHz) were expressed in parts per million downfield or upfield from CDCl₃ ($\delta = 77.0$) or DMSO- d_6 ($\delta = 39.6$) (as an internal standard. IR spectra were recorded on a JASCO FT/IR-460 plus spectrometer in KBr disk or on NaCl plate. Absorption spectra were measured with quartz cell (1 cm \times 1 cm)on a JASCO V570 spectrophotometer. Fluorescence spectra in solution were measured with quartz cell (1 cm \times 1 cm) on a JASCO FP-6600 spectrofluorometer. Fluorescence spectra in neat form were measured with glass plates sandwiched the compound. Absolute fluorescence quantum yield was measured with the integrating sphere unit. Elemental analyses (EA) were carried out on a Perkin-Elmer 2400CHN or an Exeter Analytical, Inc. CE-440 in Analytical Chemical Center of Chiba University. Mass spectra were carried out on a JEOL JMS-AX500, a JMS-HX110, or THERMO Scientific Exactive in Analytical Chemical Center of Chiba University. Analytical thin-layer chromatography (TLC) was performed on glass plates pre-coated with silica gel (layer thickness 0.25 mm). Column chromatography was performed on 70-230 mesh silica gel. The commercially available materials were purchased from Aldrich Chemical Co., Tokyo Kasei Chemical Industry Co., Wako Pure Chemical Co., Kanto Chemical Co., and Nacalai Tesque Inc. Anhydrous CH₃CN was distilled from sodium hydride and was stored with MS 3Å. The reactions were performed under nitrogen atmosphere otherwise noted.

Typical Procedure for the Preparation of Methyl 3-(Aryl(methyl)amino)acrylates.

(*E*)-Methyl 3-(Methyl(phenyl)amino)acrylate (3a):¹ To a solution of *N*-methylaniline (0.537 g, 5.01 mmol) in MeOH (10 mL) was added methyl 2-propynoate (0.428 g, 5.09 mmol) at room temperature under air atmosphere. The mixture was stirred for 4 d and was concentrated under reduced pressure to give (*E*)-methyl 3-(methyl(phenyl)amino)acrylates (3a) (0.967 g, 5.05 mmol) as brown oil quantitatively. The compound was used to next reaction without further purification. ¹H NMR (300 MHz, CDCl₃): δ 3.25 (s, 3H), 3.71 (s, 3H), 4.94 (d, 1H, *J* = 13.2 Hz), 7.12 (t, 1H, *J* = 7.6 Hz), 7.13 (d, 2H, *J* = 7.1 Hz), 7.35 (t, 2H, *J* = 7.6 Hz), 7.94 (d, 1H, *J* = 13.2 Hz);² ¹³C NMR (75 MHz, CDCl₃): δ 36.5, 50.7, 89.9, 119.8 (2C), 124.2, 129.4 (2C), 146.5, 148.5, 169.5.

(*E*)-Methyl 3-(Methyl(4-tolyl)amino)acrylate (3b): The titled compound was prepared for 5 d quantitatively according to a procedure similar to that mentioned in 3a: Brown oil; ¹H NMR (300 MHz, CDCl₃): δ 2.33 (s, 3H), 3.22 (s, 3H), 3.70 (s, 3H), 4.89 (d, 1H, J = 13.1 Hz), 7.02 (d, 2H, J = 8.5 Hz), 7.21 (d, 2H, J = 8.2 Hz), 7.90 (d, 1H,

 $J = 13.2 \text{ Hz}; {}^{13}\text{C NMR} (75 \text{ MHz, CDCl}_3): \delta 20.6, 36.7, 50.7, 89.2, 119.9 (2C), 129.9 (2C), 133.9, 144.2, 148.8, 169.6; IR (neat): 2949, 1694, 1622, 1597, 1510, 1438, 1336, 1264, 1224, 1161, 1126, 1039, 985, 833, 800, 690 \text{ cm}^{-1}.$ EA Calcd for C₁₂H₁₅NO₂: C, 70.22; H, 7.37; N, 6.82%. Found: C, 70.23; H, 7.33; N, 6.83%.

(*E*)-Methyl 3-(Methyl(4-methoxyphenyl)amino)acrylate (3c): The titled compound (E/Z = 91 : 9) was prepared for 2 d quantitatively according to a procedure similar to that mentioned in 3a: Brown oil; ¹H NMR (300 MHz, CDCl₃): δ 3.21 (s, 3H), 3.70 (s, 3H), 3.80 (s, 3H), 4.84 (d, 1H, J = 13.2 Hz), 6.88 (d, 2H, J = 9.0 Hz), 7.06 (d, 2H, J = 9.0 Hz), 7.82 (d, 1H, J = 13.1 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 37.5, 50.6, 55.5, 88.5, 114.5 (2C), 122.0 (2C), 140.1, 149.5, 156.7, 169.7; IR (neat): 2948, 2909, 2837, 1695, 1622, 1603, 1513, 1438, 1340, 1246, 1160, 1127, 1037, 985, 831, 796, 688 cm⁻¹. EA Calcd for C₁₂H₁₅NO₃: C, 65.14; H, 6.83; N, 6.33%. Found: C, 64.98; H, 6.86; N, 6.26%.

(*E*)-Methyl 3-((4-Fluorophenyl)methylamino)acrylate (3d): The titled compound was prepared for 3 d quantitatively according to a procedure similar to that mentioned in 3a: Brown oil; ¹H NMR (300 MHz, CDCl₃): δ 3.22 (s, 3H), 3.71 (s, 3H), 4.91 (s, 1H, *J* = 13.2 Hz), 7.01-7.12 (m, 4H), 7.83 (d, 1H, *J* = 13.2 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 37.1, 50.7, 89.7, 116.0 (d, 2C, *J*_{C-C2-F} = 22.7 Hz), 121.8 (d, 2C, *J*_{C-C-F} = 8.2 Hz), 142.8 (d, *J*_{C-C3-F} = 2.9 Hz), 148.8, 159.5 (d, *J*_{C-F} = 244.3 Hz), 169.5; IR (neat): 2950, 1696, 1618, 1597, 1510, 1438, 1336, 1264, 1224, 1162, 1126, 1039, 986, 828, 801, 690 cm⁻¹. EA Calcd for C₁₁H₁₂FNO₂: C, 63.15; H, 5.78; N, 6.69%. Found: C, 63.02; H, 5.35; N, 6.67%.

(*E*)-Methyl 3-((4-Methoxycarbonylphenyl)methylamino)acrylate (3e): The titled compound was prepared for 6 d in 87% yield purified by column chromatography after according to a procedure similar to that mentioned in 3a: Colorless needle crystals; m.p. 117.6–118.7 °C (hexane-chloroform); ¹H NMR (300 MHz, CDCl₃): δ 3.28 (s, 3H), 3.73 (s, 3H), 3.91 (s, 3H), 5.09 (d, 1H, J = 13.2 Hz), 7.16 (d, 2H, J = 8.9 Hz), 8.02 (d, 1H, J = 13.2 Hz), 8.03 (d, 2H, J = 8.9 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 35.7, 51.0, 52.0, 92.7, 118.0 (2C), 125.0, 131.2 (2C), 146.8, 149.7, 166.4, 169.1; IR (KBr): 2993, 2954, 1717, 1628, 1591, 1516, 1427, 1314, 1258, 1169, 1139, 1113, 1028, 977, 841, 804, 765, 695 cm⁻¹. EA Calcd for C₁₃H₁₅NO₄·0.1H₂O: C, 62.19; H, 6.10; N, 5.58%. Found: C, 62.11; H, 5.96; N, 5.54%.

(*E*)-Methyl 3-(Methyl(4-trifluoromethylphenyl)amino)acrylate (3f): The titled compound was prepared for 4 d at 40 °C in 66% yield purified by column chromatography after according to a procedure similar to that mentioned in 3a: colorless needle crystals; m.p. 78.7–79.5 °C (hexane-chloroform); ¹H NMR (300 MHz, CDCl₃): δ 3.27 (s, 3H), 3.73 (s, 3H), 5.07 (d, 1H, *J* = 13.3 Hz), 7.21 (d, 2H, *J* = 8.5 Hz), 7.60 (d, 2H, *J* = 8.5 Hz), 7.98 (d, 1H, *J* = 13.2 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 35.9, 51.0, 92.6, 118.7 (2C), 124.0 (q, *J*_{C-F} = 271.5 Hz), 125.8 (q, *J*_{C-C-F} = 32.8 Hz), 126.7 (q, 2C, *J*_{C-C2-F} = 3.6 Hz), 147.0, 148.9, 169.1; IR (KBr): 3001, 2955, 1699, 1594, 1522, 1437, 1385, 1323, 1266, 1165, 1106, 1073, 1036, 980, 963, 933, 830, 808, 760 cm⁻¹. HRMS (ESI): Calcd for C₁₂H₁₂F₃NNaO₂ ([M+Na]⁺): 282.0718. Found: 282.0712.

Typical Procedure for the Formation of Methyl 1-Methyl-1,2-dihydroquinoline-3-carboxylate Derivatives (2).

Methyl 2-(Methoxycarbonylmethyl)-1-methyl-1,2-dihydroquinoline-3-carboxylate (2a): To a solution of methyl 3-(methyl(phenyl)amino)acrylate (**3a**) (0.208 g, 1.09 mmol) in anhydrous CH₃CN (10 mL) was added I₂ (84.1 mg, 0.331 mmol) at room temperature under nitrogen atmosphere. To the mixture was added EtSH (39.0 mg, 0.628 mmol). The resultant mixture was stirred for 1 d at that temperature. EtOAc (10 mL) was added to the reaction mixture, and it was washed with saturated aqueous Na₂SO₃ (10 mL × 4). The aquous layer was extracted with EtOAc (5 mL x 2). The combined organic layer was dried with Na₂SO₄. After filtration and evaporation, the residue was subject to column chromatography on SiO₂ (chloroform : ethyl acetate = 15 : 1) to give methyl 2-(methoxycarbonylmethyl)-1-methyl-1,2-dihydroquinoline-3-carboxylate (**2a**) (0.121 g, 0.440 mmol) in 81% yield as yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 2.40 (dd, 1H, *J* = 5.4 and 6.2 Hz), 6.56 (d, 1H, *J* = 6.3 and 13.6 Hz), 3.02 (s, 3H), 3.53 (s, 3H), 3.81 (s, 3H), 4.94 (dd, 1H, *J* = 5.4 and 6.2 Hz), 6.56 (d, 1H, *J* = 8.2 Hz), 6.70 (dd, 1H, *J* = 6.7 and 7.4 Hz), 7.12 (dd, 1H, *J* = 1.4 and 7.5 Hz), 7.24 (dt, 1H, *J* = 1.5 and 6.9 Hz), 7.49 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 37.3 (2C), 51.7, 51.8, 56.8, 111.9, 117.4, 120.2, 122.2, 129.7, 132.1, 135.3, 145.1, 165.7, 171.6; IR (neat): 2950, 1738, 1733, 1704, 1699, 1634, 1600, 1494, 1353, 1324, 1305, 1248, 1203, 1161, 1079, 1032, 1013, 986, 768, 750 cm⁻¹. EA Calcd for C₁₅H₁₇NO₄: C, 65.44; H, 6.22; N, 5.09%. Found: C, 65.39; H, 6.19; N, 5.03%.

Methyl 2-(Methoxycarbonylmethyl)-1,6-dimethyl-1,2-dihydroquinoline-3-carboxylate (2b): The titled compound was prepared for 1 d in 66% yield according to a procedure similar to that mentioned in **2a**: Yellow needle crystals; m.p. 49.8–52.3 °C (hexane-chloroform); ¹H NMR (300 MHz, CDCl₃): δ 2.24 (s, 3H), 2.37 (dd, 1H,

J = 5.2 and 13.6 Hz), 2.51 (dd, 1H, J = 6.5 and 13.5 Hz), 2.99 (s, 3H), 3.54 (s, 3H), 3.80 (s, 3H), 4.90 (t, 1H, J = 5.9 Hz), 6.48 (d, 1H, J = 8.2 Hz), 6.94 (s, 1H), 7.06 (d, 1H, J = 8.8 Hz), 7.46 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 20.1, 36.9, 37.3, 51.7, 51.8, 56.8, 112.0, 120.3, 122.4, 126.5, 130.0, 132.9, 135.3, 143.0, 165.8, 171.7; IR (KBr): 2950, 1734, 1685, 1624, 1559, 1525, 1490, 1437, 1319, 1241, 1194, 1075, 871, 747 cm⁻¹. HRMS (ESI): Calcd for C₁₆H₁₉NNaO₄ ([M+Na]⁺): 312.1206. Found: 312.1197.

Methyl 6-(Methoxy)-2-(methoxycarbonylmethyl)-1-methyl-1,2-dihydroquinoline-3-carboxylate (2c): The titled compound was prepared for 1 d in 49% yield according to a procedure similar to that mentioned in **2a**: Orange needle crystals; m.p. 67.2–69.3 °C (hexane-chloroform-ethyl acetate); ¹H NMR (300 MHz, CDCl₃): δ 2.36 (dd, 1H, J = 5.5 and 13.7 Hz), 2.51 (dd, 1H, J = 6.6 and 13.5 Hz), 2.98 (s, 3H), 3.54 (s, 3H), 3.76 (s, 3H), 3.81 (s, 3H), 4.88 (t, 1H, J = 5.9 Hz), 6.53 (d, 1H, J = 8.7 Hz), 6.72 (d, 1H, J = 2.8 Hz), 6.87 (dd, 1H, J = 2.9 and 8.8 Hz), 7.46 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 36.6, 37.4, 51.7, 51.8, 55.9, 56.7, 113.2, 114.0, 118.7, 121.1, 123.5, 135.0, 139.7, 151.8, 165.7, 171.7; IR (KBr): 2994, 2950, 1733, 1700, 1637, 1567, 1497, 1435, 1239, 1208, 1188, 1167, 1084, 1037, 808, 768, 730, 690 cm⁻¹. HRMS (ESI): Calcd for C₁₆H₁₉NNaO₅ ([M+Na]⁺): 328.1155. Found: 328.1149.

Methyl 6-Fluoro-2-(methoxycarbonylmethyl)-1-methyl-1,2-dihydroquinoline-3-carboxylate (2d): The titled compound was prepared for 4 d in 70% yield according to a procedure similar to that mentioned in **2a**: Orange needle crystals; m.p. 67.8–68.3 °C (hexane-chloroform-ethyl acetate); ¹H NMR (300 MHz, CDCl₃): δ 2.38 (dd, 1H, J = 5.2 and 13.7 Hz), 2.50 (dd, 1H, J = 6.5 and 13.7 Hz), 3.00 (s, 3H), 3.54 (s, 3H), 3.82 (s, 3H), 4.91 (dd, 1H, J = 5.5 and 6.2 Hz), 6.49 (dd, 1H, J = 8.9 Hz and $J_{H-C3-F} = 4.5$ Hz), 6.85 (dd, 1H, J = 2.9 Hz and $J_{H-C2-F} = 8.5$ Hz), 6.96 (ddd, 1H, J = 3.0, 8.8 Hz, and $J_{H-C2-F} = 8.8$ Hz), 7.42 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 36.9, 37.6, 51.7, 51.9, 56.7, 112.9 (d, $J_{C-C2-F} = 7.1$ Hz), 115.1 (d, $J_{C-C-F} = 19.1$ Hz), 118.5 (d, $J_{C-C-F} = 22.9$ Hz), 121.0 (d, $J_{C-C2-F} = 8.0$ Hz), 124.1, 134.2 (d, $J_{C-C3-F} = 2.6$ Hz), 141.5, 155.4 (d, $J_{C-F} = 235.9$ Hz), 165.4, 171.4 ; IR (KBr): 2952, 2925, 2852, 1733, 1704, 1640, 1572, 1496, 1435, 1348, 1288, 1270, 1234, 1208, 1152, 1083, 1032,1016, 986, 963, 925, 866, 808, 768, 735, 696 cm⁻¹. HRMS (ESI): Calcd for C₁₅H₁₆FNNaO₄ ([M+Na]⁺): 316.0956. Found: 316.0956.

Dimethyl 2-(Methoxycarbonylmethyl)-1-methyl-1,2-dihydroquinoline-3,6-dicarboxylate (2e): The titled compound was prepared for 4 d in 73% yield according to a procedure similar to that mentioned in **2a**: Yellow

needle crystals; m.p. 67.2–69.3 °C (hexane-chloroform-ethyl acetate); ¹H NMR (300 MHz, CDCl₃): δ 2.47 (dd, 1H, J = 5.0 and 13.9 Hz), 2.54 (dd, 1H, J = 6.1 and 14.0 Hz), 3.08 (s, 3H), 3.50 (s, 3H), 3.82 (s, 3H), 3.86 (s, 3H), 4.99 (dd, 1H, J = 5.2 and 5.9 Hz), 6.54 (d, 2H, J = 8.7 Hz), 7.50 (s, 1H), 7.78 (d, 1H, J = 2.0 Hz), 7.89 (dd, 1H, J = 2.1 and 8.7 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 37.6, 38.3, 51.7, 51.8, 52.0, 57.2, 111.1, 118.7, 119.1, 122.4, 131.5, 133.7, 135.0, 148.6, 165.3, 166.7, 171.1; IR (KBr): 2995, 2952, 2847, 1733, 1704, 1699, 1640, 1606, 1559, 1506, 1436, 1332, 1310, 1274, 1249, 1198, 1114, 1082, 1016, 986, 934, 825, 767 cm⁻¹. HRMS (ESI): Calcd for C₁₇H₁₉NNaO₆ ([M+Na]⁺): 356.1105. Found: 356.1097.

Methyl 2-(Methoxycarbonylmethyl)-1-methyl-6-(trifluoromethyl)-1,2-dihydroquinoline-3-carboxylate (2f): The titled compound was prepared for 4 d at 40 °C in 66% yield according to a procedure similar to that mentioned in **2a**: Yellow needle crystals; m.p. 51.0–53.1 °C (hexane-chloroform-ethyl acetate); ¹H NMR (300 MHz, CDCl₃): δ 2.45 (dd, 1H, *J* = 5.3 and 13.8 Hz), 2.53 (dd, 1H, *J* = 6.2 and 13.8 Hz), 3.07 (s, 3H), 3.52 (s, 3H), 3.82 (s, 3H), 4.98 (dd, 1H, *J* = 5.3 and 6.2 Hz), 6.59 (d, 1H, *J* = 8.5 Hz), 7.33 (d, 1H, *J* = 1.2 Hz), 7.44 (dd, 1H, *J* = 1.8 and 8.8 Hz), 7.48 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 37.6, 38.0, 51.7, 52.0, 57.0, 111.6, 119.1 (q, *J*_{C-C2-F} = 33 Hz), 119.5, 123.3, 124.5 (q, *J*_{C-F} = 270.5 Hz), 126.6 (q, *J*_{C-C2-F} = 3.8 Hz), 128.7 (q, *J*_{C-C2-F} = 3.6 Hz), 134.4, 147.3, 165.2, 171.1; IR (KBr): 2956, 1734, 1714, 1639, 1568, 1511, 1440, 1330, 1278, 1244, 1195, 1138, 1106, 1035, 1009, 961, 911, 863, 810, 765, 743 cm⁻¹. HRMS (ESI): Calcd for C₁₆H₁₆F₃NNaO₄ ([M+Na]⁺): 366.0924. Found: 366.0914.

Typical Procedure for Hydrolysis of 2.

2-(Carboxymethyl)-1-methyl-1,2-dihydroquinoline-3-carboxylic Acid (4a): To a solution of methyl 2-(methoxycarbonylmethyl)-1-methyl-1,2-dihydroquinoline-3-carboxylate (**2a**) (55.0 mg, 0.200 mmol) in THF (1 mL) was added 1 M aqueous solution of KOH (1 mL). The mixture was stirred for 2 h at room temperature under air atmosphere. The reaction mixture was added water 5 mL and was washed with CHCl₃ (5 mL × 4). The aqueous layer was added 1 M aqueous HCl (2 mL) to acidify to pH 1~2. After extraction with CHCl₃ (5 mL × 9), the extracted organic layer was dried with Na₂SO₄ and was concentrated under reduced pressure to give 2-(carboxymethyl)-1-methyl-1,2-dihydroquinoline-3-carboxylic acid (**4a**) (49.1 mg, 1.99 mmol) in 99% yield as yellow solid. m.p. 120.8–121.1 °C (hexane-chloroform); ¹H NMR (300 MHz, DMSO-*d*₆): δ 2.16 (dd, 1H, *J* = 4.3 and 14.0 Hz), 2.32 (dd, 1H, *J* = 7.4 and 14.0 Hz), 2.94 (s, 3H), 4.80 (dd, 1H, *J* = 4.3 and 7.3 Hz), 6.59 (d, 1H, *J* = 8.6 Hz), 6.64 (t, 1H, *J* = 7.3 Hz), 7.19 (d, 1H, *J* = 7.4 Hz), 7.19 (t, 1H, *J* = 6.7 Hz), 7.38 (s, 1H), 12.33 (bs, 2H); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 37.1, 37.5, 56.2, 111.9, 116.9, 120.1, 123.7, 129.5, 131.9, 134.0, 144.9, 166.2, 172.3; IR (KBr): 2950(br), 2400(br), 1695, 1684, 1653, 1559, 1540, 1507, 1490, 1457, 1436, 1266, 1204, 1161, 750 cm⁻¹. HRMS (ESI): Calcd for C₁₃H₁₃NNaO₄ ([M+Na]⁺): 270.0737. Found: 270.0725.

2-(Carboxymethyl)-6-fluoro-1-methyl-1,2-dihydroquinoline-3-carboxylic Acid (4d): The titled compound was prepared in 85% yield according to a procedure similar to that mentioned in **4a**: Yellow solid; m.p. 128.1–129.5 °C (hexane-chloroform); ¹H NMR (300 MHz, DMSO-*d*₆): δ 2.15 (dd, 1H, *J* = 4.4 and 14.0 Hz), 2.31 (dd, 1H, *J* = 7.3 and 14.0 Hz), 2.92 (s, 3H), 4.78 (dd, 1H, *J* = 4.4 and 7.2 Hz), 6.57 (dd, 1H, *J* = 9.0 Hz and *J*_{H-C3-F} = 4.5 Hz), 7.04 (dd, 1H, *J* = 3.0, 8.8 Hz, and *J*_{H-C2-F} = 8.8 Hz), 7.13 (dd, 1H, *J* = 3.0 Hz and *J*_{H-C2-F} = 9.0 Hz), 7.38 (s, 1H), 12.38 (bs, 2H); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 37.1, 37.3, 56.2, 113.0 (d, *J*_{C-C2-F} = 8.1 Hz), 115.0 (d, *J*_{C-C-F} = 22.5 Hz), 118.0 (d, *J*_{C-C-F} = 22.8 Hz), 121.1 (d, *J*_{C-C2-F} = 8.3 Hz), 125.7, 133.0 (d, *J*_{C-C3-F} = 2.3 Hz), 141.6, 154.7 (d, *J*_{C-F} = 232.6 Hz), 166.1, 172.3; IR (KBr) 2890(br), 2400(br), 1695, 1653, 1646, 1568, 1496, 1418, 1312, 1235, 1207, 1161, 973, 805 cm⁻¹. HRMS (ESI): Calcd for C₁₃H₁₂FNNaO₄ ([M+Na]⁺): 288.0643. Found: 288.0630.

2-(Carboxymethyl)-6-fluoro-1-methyl-1,2-dihydroquinoline-3-carboxylic Acid (4f): The titled compound was prepared in 98% yield according to a procedure similar to that mentioned in **4a**: Green solid; m.p. 141.2–143.1 °C (hexane-chloroform); ¹H NMR (300 MHz, DMSO-*d*₆): δ 2.29 (dd, 1H, *J* = 4.7 and 14.0 Hz), 2.35 (dd, 1H, *J* = 6.0 and 14.2 Hz), 3.00 (s, 3H), 4.88 (dd, 1H, *J* = 5.1 and 5.9 Hz), 6.69 (d, 1H, *J* = 8.8 Hz), 7.45 (dd, 1H, *J* = 2.0 and 8.7 Hz), 7.48 (s, 1H), 7.54 (d, 1H, *J* = 1.8 Hz); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 37.3, 38.4, 56.6, 117.7, 116.8 (q, *J*_{C-C-F} = 32.4 Hz), 119.7, 125.00, 125.02 (q, *J*_{C-C-F} = 270.4 Hz), 126.3 (q, *J*_{C-C2-F} = 3.7 Hz), 128.3 (q, *J*_{C-C2-F} = 3.3 Hz), 133.2, 147.6, 166.0, 172.2; IR (KBr): 2970(br), 2400(br), 1699, 1653, 1647, 1617, 1559, 1540, 1521, 1507, 1457, 1447, 1419, 1329, 1196, 1164, 1142, 1109, 1070, 817 cm⁻¹. HRMS (ESI): Calcd for C₁₄H₁₂F₃NNaO₄ ([M+Na]⁺): 338.0611. Found: 338.0602.

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2012

Table S1 Summary of TD-DFT calculation with B3LYP/6-31+G*.

References

- 1 A. Padwa and L. Zhi, J. Am. Chem. Soc., 1990, 112, 2037–2038.
- 2 J. J. Bozel and L. S. Hegedus, J Org. Chem., 1981, 46, 2561–2563.