Supporting Information

Wet-Milled Transition Metal Oxide Nanoparticles as Buffer Layers for Bulk Heterojunction Solar Cells

Jen-Hsien Huang,¹ Tzu-Yen Huang,² Hung-Yu Wei,³ Kuo-Chuan Ho^{2,3} and Chih-Wei Chu^{1,4}*

¹ Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan

² Department of Chemical Engineering, National Taiwan University, Taipei 10617,

Taiwan

³Institute of Polymer Science and Engineering, National Taiwan University, Taipei,

Taiwan 106

4Department of Photonics National Chiao Tung University, Hsinchu, Taiwan 300

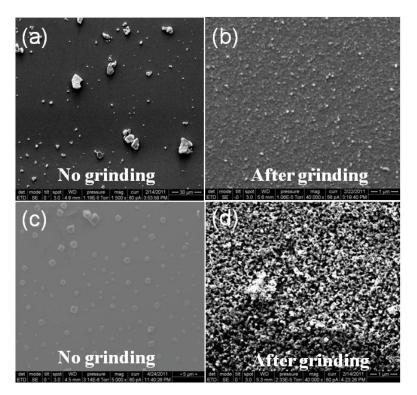


Figure S1. The comparison of SEM images for (a) raw V_2O_5 ; (c) raw WO_3 and (b) V_2O_5 ; (d) WO_3 after grinding. It can be found that the particle size of the V_2O_5 and WO_3 decreases significantly after grinding for 240 min.

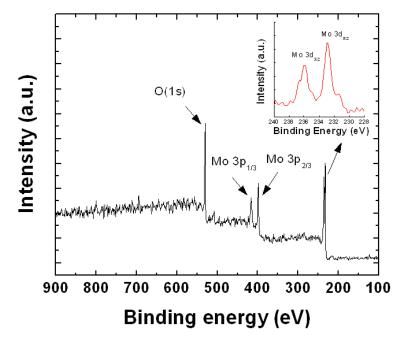


Figure S2. The XPS spectrum of the MoO_3 film cast from the as-prepared solution. Based on the survey spectrum, it can be found that the chemical composition is totally contributed from the MoO_3 powder without any impurity. This indicates that this solution–based method preserves the intrinsic electronic properties of MoO_3 .

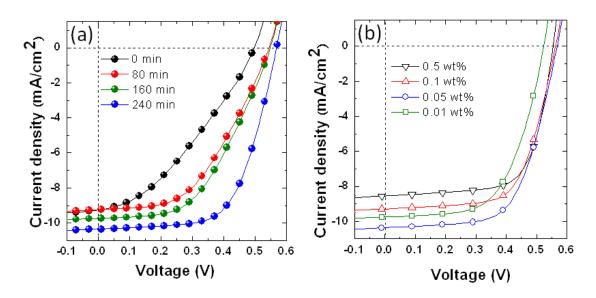


Figure S3. (a) The effect of grinding time on cell performance (P3HT:PCBM) with MoO_3 as buffer layers; (b) the effect of MoO_3 solution concentration on the cell performance.