Utilizing AgCl:Ag and AgCl Mesostructures as Solid Precursors in the Formation of Highly Textured Silver Nanomaterials via Electron-Beam Induced Decomposition

Eric V. Formo¹, Wujun Fu,¹ Adam Rondinone,¹ Sheng Dai^{1,2}*

1) Center for Nanophase Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

2) Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

* To whom correspondence should be addressed, E-mail: dais@ornl.gov. Fax: 865-576-5235;

Experimential Section.

Chemicals

Ethylene glycol (EG, J. T. Baker), poly(vinyl pyrrolidone) (PVP, Mw $\approx 5.5 \times 10^4$), Sodium hydrosulfide (NaSH nH2O), Rhodamine 6G (R6G, 95%), Silver trifluoroacetate (CF₃COOAg, 99.999%) were all obtained from Aldrich. All chemicals were used as received.

AgCl:Ag, and AgCl nanostructure synthesis:

In a typical procedure for the generation of AgCl:Ag, or AgCl nanostructures, 5 mL of Ethylene Glycol (EG) was injected into a vial with a Teflon-coated stir bar and heated in air at 150°C for 30 minutes. Subsequently, 60 μ L of a 3 mM NaSH solution in EG was then added to the hot EG. After two minutes 0.5 mL of 3mM HCl in EG and 1.25 mL of PVP (20 mg/mL in EG, Mw≈5.5x10⁴) were added and allowed to heat for an additional two minutes. Finally, 0.4 mL of a 282 mM CF₃COOAg solution followed immediately by 0.4 mL of 208 mM R6G (AgCl:Ag) or HCl (AgCl) solution. The reaction mixture

was continuously heated at 150° C in air for 80 minutes. The solution was then washed with acetone and 18 M Ω D.I. water to remove excess organics.

Characterization

Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray spectroscopy (EDAX) samples were prepared by drop casting a dispersion of the nanostructures onto a Si chip and allowing them to dry in air. SEM and EDAX analysis were performed with a Carl Zeiss Merlin FE-SEM operated at 20 kV with a working distance of 6.1 mm. Powdered X-ray diffraction pattern (PXRD) measurements were performed at a PANalytical X' pert PRO 2-circle X-ray diffractometer with a Cu K α radiation ($\lambda \approx$ 1.5418 Å). The scan range is from 2θ 5° to 90°. Raman spectra were recorded with a Renishaw system 1000 Raman spectrometer equipped with an integral microscope (Leica DMLMS/N). The laser line of 632.8 nm from a 25-mW air-cooled He-Ne laser (Renishaw) was used as an excitation source. Raman scattering was collected with a dry objective in 180° configuration. With a holographic grating and a 50-*i*m slit, a spectral resolution of 1 cm⁻¹ was obtained. A silicon wafer with a Raman band at 520 cm⁻¹ was used to calibrate the spectrometer, and the accuracy of the spectral measurement was estimated to be better than 1 cm⁻¹. For SERS characterization an ethanol solution containing a known concentration of 0.1 mM rhodamine 6G chloride (R6G) was used. Laser power was at 100% and 25% for AgCl and AgCl:Ag samples respectively.

S1: XRD pattern of AgCl:Ag (Black) and AgCl (Red) cubic nanostructures

S2. SEM of the different stages of a AgCl:Ag standard synthesis that used 208 mM R6G removed at (a) 10 and (b) 20 minutes which have average edge length of \sim 250 and \sim 350 nm respectively.

S3. EDAX measurements of a singular AgCl:Ag (Black) and AgCl (AgCl) with respect to time under the electron beam.