Supporting Information for:

A simple and efficient method for the facile access of highly functionalized pyridines and their fluorescence property studies

Md. Nasim Khan^a, Suman Pal,^a Tasneem Parvin^b and Lokman H. Choudhury^a*

^aDepartment of Chemistry, Indian Institute of Technology Patna, Bihar 800 013, India

Corresponding author's E-mail: *lokman@iitp.ac.in*

^bDepartment of Chemistry, National Institute of Technology Patna, Bihar 800 005, India

Table of Content

Fluorescence quantum yield of pyridine derivatives (1b-1p, 5b & 5c) in chloroformsolvent and equation used for the fluorescence quantum yield calculationS2

¹H and ¹³C NMR spectra of **1a-1p**, **2a-2c**, **5a-5d**, **3a**, **3b**, **4 & 6** S3-S29

Sr.	Compound	λ^{abs}_{max}	λ^{em}_{max}	Ø _f
No				
01.	1b	343	432	0.03
02.	1c	346	386	0.05
03.	1d	343	386	0.04
04.	1e	348	389	0.02
05.	1f	344	425	0.01
06.	1g	356	401	0.00
07.	1h	345	392	0.02
08.	1i	350	389	0.00
09.	1j	346	425	0.01
10.	1k	329	386	0.01
11.	11	336	386	0.01
12.	1m	341	451	0.03
13.	1n	343	422	0.01
14.	10	344	422	0.01
15.	1p	347	423	0.02
16.	5b	314	417	0.10
17.	5c	346	424	0.27

Fluorescence quantum yield of pyridine derivatives (1b-1p, 5b & 5c) in chloroform solvent:

^aQuantum yields were calculated with respect to quinine sulphate dihydrate in water.

 $Ø_f = Quantum yield$

 $\lambda^{abs}_{max} = Absorbance maxima$

 $\lambda^{em}_{max} = Fluorescence maxima$

Fluorescence quantum yields (\emptyset_f) were calculated according to the equation.

$$\mathcal{O}_{unk} = \mathcal{O}_{std} \mathbf{x} \left[\mathbf{I}_{unk} / \mathbf{I}_{std} \right] \mathbf{x} \left[\mathbf{A}_{std} / \mathbf{A}_{unk} \right] \mathbf{x} \left[\eta_{unk} / \eta_{std} \right]^2$$

Where, \emptyset_{unk} is the fluorescence quantum yield of the sample, \emptyset_{std} is the quantum yield of the standard ($\emptyset_f = 0.55$, quinine sulphate dihydrate in 0.1 N H₂SO₄), I_{unk} and I_{std} are the integrated emission intensities of the sample and the standard, respectively, A_{unk} and A_{std} are the absorbance of the sample and the standard, respectively, and η_{unk} and η_{std} are the refractive index of the medium taken.

¹H and ¹³C spectra of compound 1a

¹H and ¹³C spectra of compound 1b

¹H and ¹³C spectra of compound 1c

¹H and ¹³C spectra of compound 1d

¹H and ¹³C spectra of compound 1e

¹H and ¹³C spectra of compound 1f

¹H and ¹³C spectra of compound 1g

¹H and ¹³C spectra of compound 1h

¹H and ¹³C spectra of compound 1i

¹H and ¹³C spectra of compound 1j

¹H and ¹³C spectra of compound 1k

¹H and ¹³C spectra of compound 11

¹H and ¹³C spectra of compound 1m

¹H and ¹³C spectra of compound 1n

¹H and ¹³C spectra of compound 10

¹H and ¹³C spectra of compound 1p

¹H and ¹³C spectra of compound 2a

¹H and ¹³C spectra of compound 2b

¹H and ¹³C spectra of compound 2c

¹H and ¹³C spectra of compound 5a

¹H and ¹³C spectra of compound 5b

¹H and ¹³C spectra of compound 5c

¹H and ¹³C spectra of compound 5d

¹H and ¹³C spectra of compound 3a

¹H and ¹³C spectra of compound 3b

¹H and ¹³C spectra of compound 4

¹H and ¹³C spectra of compound 6

