Supplementary Information

Au-catalyzed Cascade Addition/Cyclization/H-transfer Reactions of 3-(1-alkynyl)chromones to Construct 4*H*-Furo[3, 2-c]pyrans Scaffold[†]

Feng Hu,^a Taijie Chen^b, Jianwei Yan,^a Ming Cheng^a, Liping Huang^a and Youhong Hu^{*a}

^a Address State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, CAS, 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China.
^b Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China.

E-mail: yhhu@mail.shcnc.ac.cn.

Contents of Supplementary Information:

1. General information	S1
2. A typical procedure for Table 2	S1
3. Characterization of the products	S2-S7
4. ¹ H and ¹³ C NMR spectra	S8-S30

General information

Solvents were purified according to *Purification of Laboratory Chemicals* except as noted. Petroleum ether refers to the fraction with boiling point in the range 60–90 °C. All ¹H NMR and ¹³C NMR spectra were measured with TMS as the internal standard on a 500, 400 or 300 MHz NMR spectrometer. Chemical shift are expressed in ppm and *J* value are given in Hz. High resolution mass spectra were recorded on a mass spectrometer (EI). Column chromatography was performed with 300–400 mesh silica gel using flash column techniques.

A typical procedure for Table 2

To the solution of the substrates **1** (0.30 mmol) in dichloromethane (3 mL) was added (PPh₃)AuCl (0.003 mmol), AgOTf (0.003mmol) and hydrogen source **3** (0.36 mmol, 1.2 eq). The mixture was stirred at room temperature for the corresponding time and then evaporated. The crude product was directly purified by column chromatography to afford the corresponding product **2**.

Characterization of the products

2-phenyl-4H-furo[3,2-c]chromene (2a)

White solid; Yield: 90%; mp 91-92 °C; ¹H NMR (400MHz, CDCl₃): δ = 7.78 – 7.67 (m, 2H), 7.48 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.44 – 7.38 (m, 2H), 7.33 – 7.25 (m, 1H), 7.19 -7.07 (m, 1H), 7.02 – 6.94 (m, 1H), 6.93 – 6.86 (m, 1H), 6.54 (s, 1H), 5.41 (s, 2H); ¹³C NMR (100MHz, CDCl₃): δ = 154.3, 152.9, 145.3, 130.4, 128.7, 128.4, 127.5, 123.6, 121.5, 119.4, 116.7, 116.1, 115.6, 103.2, 65.8; HRMS calcd for C₁₇H₁₂O₂: 248.0837, found: 248.0841.

2-(4-(trifluoromethyl)phenyl)-4H-furo[3,2-c]chromene (**2b**)

Colorless oil; Yield: 87% ¹H NMR (500MHz, CDCl₃): δ = 7.71 (d, *J* = 8.3 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.41 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.08 (td, *J* = 7.8, 1.5 Hz, 1H), 6.92 (dt, *J* = 7.4, 3.7 Hz, 1H), 6.83 (d, *J* = 8.1 Hz, 1H), 6.57 (s, 1H), 5.33 (s, 2H); ¹³C NMR (125MHz, CDCl₃): δ = 153.2, 152.8, 146.6, 133.5, 129.1 (q, *J* = 25.6 Hz), 129.0, 125.8 (q, *J* = 2.8 Hz), 124.2 (q, *J* = 215.2 Hz), 123.6, 121.6, 119.7, 116.4, 115.8, 105.2, 65.7; HRMS calcd for C₁₈H₁₁F₃O₂: 316.0711, found: 316.0715.

2-(4-methoxyphenyl)-4H-furo[3,2-c]chromene (2c)

Colorless oil; Yield: 84%; ¹H NMR (500MHz, CDCl₃): δ = 7.62 – 7.55 (m, 2H), 7.38 (dd, *J* = 7.5, 1.6 Hz, 1H), 7.03 (td, *J* = 7.9, 1.6 Hz, 1H), 6.93 – 6.86 (m, 3H), 6.80 (d, *J* = 8.1 Hz, 1H), 6.34 (s, 1H), 5.34 (s, 2H), 3.78 (s, 3H); ¹³C NMR

(125MHz, CDCl₃): δ = 159.3, 154.6, 152.8, 144.7, 128.1, 125.2, 123.5, 121.5, 119.2, 116.9, 116.1, 115.7, 114.2, 101.7, 66.0, 55.4; HRMS calcd for C₁₈H₁₄O₃: 278.0943, found: 278.0944.

4-(4H-furo[3,2-c]chromen-2-yl)butanenitrile (2d)

Yellow oil; Yield: 81% ¹H NMR (500MHz, CDCl₃): δ = 7.31 (dd, *J* = 7.5, 1.6 Hz, 1H), 7.11 – 7.04 (m, 1H), 6.91 (t, *J* = 7.5 Hz, 1H), 6.84 (d, *J* = 8.1 Hz, 1H), 5.98 (s, 1H), 5.33 (s, 2H), 2.90 – 2.80 (m, 2H), 2.40 (t, *J* = 7.1 Hz, 2H), 2.04 (p, *J* = 7.1 Hz, 2H); ¹³C NMR (125MHz, CDCl₃): δ = 154.1, 152.6, 144.9, 128.2, 121.4, 119.2, 119.1, 116.9, 116.1, 114.2, 105.0, 65.9, 26.9, 24.1, 16.4; HRMS calcd for C₁₅H₁₃NO₂: 239.0946, found: 239.0950.

2-(tert-butyl)-4H-furo[3,2-c]chromene (2e)

Colorless oil; Yield: 71%; ¹H NMR (300MHz, CDCl₃): δ = 7.35 (d, *J* = 8.0 Hz, 1H), 7.10 – 7.01 (m, 1H), 6.95 – 6.87 (m, 1H), 6.83 (d, *J* = 8.0 Hz, 1H), 5.87 (s, 1H), 5.34 (s, 2H), 1.33 (s, 9H). ¹³C NMR (125MHz, CDCl₃): δ = 165.3, 152.5, 143.8, 127.7, 121.3, 119.0, 117.3, 115.9, 114.0, 100.6, 66.2, 33.0, 29.1; HRMS calcd for C₁₅H₁₆O₂: 228.1150, found: 228.1153.

8-chloro-2-phenyl-4H-furo[3,2-c]chromene (2f)

White solid; Yield: 72%; mp 121-123 °C; ¹H NMR (500MHz, CDCl₃): δ = 7.64 (d, *J* = 8.3 Hz, 2H), 7.38 – 7.32 (m, 3H), 7.24 (d, *J* = 7.4 Hz, 1H), 6.97 (dd, *J* = 8.6, 2.5 Hz, 1H), 6.72 (d, *J* = 8.6 Hz, 1H), 6.47 (s, 1H), 5.33 (s, 2H); ¹³C NMR (125MHz, CDCl₃): δ = 155.1, 151.3, 144.2, 130.1, 128.8, 127.9, 127.8, 126.5, 123.8, 119.2, 117.9, 117.4, 116.6, 103.2, 66.1; HRMS calcd for C₁₇H₁₁ClO₂: 282.0448, found: 282.0450.

8-methoxy-2-phenyl-4H-furo[3,2-c]chromene (**2g**)

White solid; Yield: 91%; mp 109-111 °C: ¹H NMR (500MHz, CDCl₃): δ = 7.67 – 7.63 (m, 2H), 7.37 – 7.32 (m, 2H), 7.25 – 7.21 (m, 1H), 6.96 (d, *J* = 3.0 Hz, 1H), 6.76 (d, *J* = 8.8 Hz, 1H), 6.61 (dd, *J* = 8.8, 3.0 Hz, 1H), 6.48 (s, 1H), 5.26 (s, 2H), 3.77 (s, 3H); ¹³C NMR (125MHz, CDCl₃): δ = 154.5, 154.5, 146.9, 145.6, 130.4, 128.8, 127.7, 123.8, 117.3, 116.9, 116.6, 113.8, 104.5, 103.4, 65.6, 55.9; HRMS calcd for C₁₈H₁₄O₃: 278.0943, found: 278.0944.

4-methyl-2-phenyl-4H-furo[3,2-c]chromene (**2h**)

Colorless oil; Yield: 88%; ¹H NMR (300MHz, CDCl₃): δ = 7.77 – 7.69 (m, 2H), 7.48 (dd, *J* = 7.4, 1.3 Hz, 1H), 7.45 - 7.37 (m, 2H), 7.33 – 7.24 (m, 1H), 7.16 – 7.09 (m, 1H), 7.00 – 6.93 (m, 1H), 6.90 (d, *J* = 8.0 Hz, 1H), 6.54 (s, 1H), 5.65 (q,

J = 6.5 Hz, 1H), 1.67 (d, J = 6.5 Hz, 3H); ¹³C NMR (125MHz, CDCl₃): $\bar{\delta} = 154.3$, 152.7, 145.1, 130.5, 128.8, 128.4, 127.6, 123.7, 121.3, 120.6, 119.4, 116.5, 116.4, 103.1, 72.8, 22.0; HRMS calcd for C₁₈H₁₄O₂: 262.0994, found: 262.0997.

4-ethyl-2-phenyl-4H-furo[3,2-c]chromene (2i)

Colorless oil; Yield: 80%; ¹H NMR (400MHz, CDCl₃): δ = 7.76 – 7.70 (m, 2H), 7.49 (dd, *J* = 7.5, 1.6 Hz, 1H), 7.45 – 7.38 (m, 2H), 7.31- 7.27 (m, 1H), 7.13 (t, *J* = 7.8 Hz, 1H), 6.96 (t, *J* = 7.5 Hz, 1H), 6.91 (d, *J* = 8.1 Hz, 1H), 6.54 (s, 1H), 5.49 (t, *J* = 5.8 Hz, 1H), 2.02 – 1.92 (m, 2H), 1.10 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (125MHz, CDCl₃): δ = 154.2, 152.9, 145.4, 130.5, 128.8, 128.4, 127.6, 123.7, 121.1, 119.4, 119.2, 116.3, 116.3, 103.5, 77.6, 29.3, 9.1; HRMS calcd for C₁₉H₁₆O₂: 276.1150, found: 276.1156.

2,4-diphenyl-4H-furo[3,2-c]chromene (2j)

Colorless oil; Yield: 52%; ¹H NMR (500MHz, CDCl₃): δ = 7.74 – 7.68 (m, 2H), 7.58 (dd, *J* = 7.5, 1.6 Hz, 1H), 7.54 – 7.50 (m, 2H), 7.47 - 7.37 (m, 5H), 7.33 – 7.27 (m, 1H), 7.20 – 7.12 (m, 1H), 7.02 (td, *J* = 7.5, 1.0 Hz, 1H), 6.95 (d, *J* = 8.1 Hz, 1H), 6.54 (s, 1H), 6.40 (s, 1H); ¹³C NMR (125MHz, CDCl₃): δ = 154.4, 152.6, 145.4, 140.4, 130.4, 128.9, 128.8, 128.7, 127.7, 127.5, 123.7, 121.5, 119.6, 118.8, 116.5, 116.2, 104.2, 78.7; HRMS calcd for C₂₃H₁₆O₂: 324.1150, found: 324.1156.

2-phenyl-4-(4-(trifluoromethyl)phenyl)-4H-furo[3,2-c]chromene (2k)

Colorless oil; Yield: 61%; ¹H NMR (500MHz, CDCl₃): $\delta = 7.72 - 7.65$ (m, 4H), 7.61 (d, J = 8.1 Hz, 2H), 7.59 - 7.54 (m, 1H), 7.40 (t, J = 7.7 Hz, 2H), 7.29 (t, J = 7.4 Hz, 1H), 7.19 - 7.14 (m, 1H), 7.02 (t, J = 7.5 Hz, 1H), 6.93 (d, J = 8.1 Hz, 1H), 6.57 (s, 1H), 6.39 (s, 1H). ¹³C NMR (125MHz, CDCl₃): $\delta = 154.7$, 152.2, 145.3, 144.17, 130.8 (q, J = 32.5), 130.1, 128.8, 128.8, 127.8, 127.6, 125.7 (d, J = 3.75), 124.0 (q, J = 270.0), 123.7, 121.8, 119.6, 117.9, 116.4, 116.0, 103.8, 77.7; HRMS calcd for C₂₄H₁₅F₃O₂: 392.1024, found: 392.1028.

4-(4-methoxyphenyl)-2-phenyl-4H-furo[3,2-c]chromene (2I)

Colorless oil; Yield: 50%; ¹H NMR (400MHz, CDCl₃): $\delta = 7.73 - 7.67$ (m, 2H), 7.55 (dd, J = 7.5, 1.5 Hz, 1H), 7.45 - 7.36 (m, 4H), 7.31 - 7.26 (m, 1H), 7.13 (td, J = 7.9, 1.6 Hz, 1H), 6.99 (t, J = 7.5 Hz, 1H), 6.96 - 6.87 (m, 3H), 6.49 (s, 1H), 6.39 (s, 1H), 3.82 (s, 3H). ¹³C NMR (100MHz, CDCl₃): $\delta = 160.1$, 154.4, 152.6, 145.6, 132.5, 130.4, 129.1, 128.8, 128.6, 127.6, 123.7, 121.4, 119.5, 118.8, 116.5, 116.2, 114.1, 104.3, 78.3, 55.4; HRMS calcd for C₂₃H₁₆O₂: 354.1256, found: 354.1261.

4-methyl-2-(p-tolyl)-4H-furo[3,2-c]chromene (2m)

Colorless oil; Yield: 83%; ¹H NMR (500MHz, CDCl₃): δ = 7.61 (d, *J* = 8.1 Hz, 2H), 7.46 (dd, *J* = 7.5, 1.1 Hz, 1H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.10 (td, *J* = 8.0, 1.5 Hz, 1H), 6.99 – 6.92 (m, 1H), 6.88 (d, *J* = 8.1 Hz, 1H), 6.48 (s, 1H), 5.64 (q, *J* = 6.5 Hz, 1H), 2.38 (s, 3H), 1.66 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (125MHz, CDCl₃): δ = 154.6, 152.6, 144.6, 137.5, 129.5, 128.2, 127.8, 123.7, 121.3, 120.6, 119.3, 116.6, 116.3, 102.4, 72.8, 22.0, 21.3; HRMS calcd for C₁₉H₁₆O₂: 276.1150, found: 276.1156.

2-(4-methoxyphenyl)-4-methyl-4H-furo[3,2-c]chromene (2n)

Colorless oil; Yield: 86%; ¹H NMR (500MHz, CDCl₃): δ = 7.67 – 7.62 (m, 2H), 7.45 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.10 (td, *J* = 8.0, 1.6 Hz, 1H), 6.98 – 6.92 (m, 3H), 6.88 (d, *J* = 8.1 Hz, 1H), 6.40 (s, 1H), 5.63 (q, *J* = 6.5 Hz, 1H), 3.85 (s, 3H), 1.66 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (125MHz, CDCl₃): δ = 159.3, 154.4, 152.6, 144.3, 128.1, 125.2, 123.6, 121.3, 120.7, 119.2, 116.6, 116.3, 114.2, 101.6, 72.8, 55.4, 22.0; HRMS calcd for C₁₉H₁₆O₃: 292.1099, found: 292.1103.

2-(*tert*-butyl)-4-methyl-4H-furo[3,2-c]chromene (**2o**)

Colorless oil; Yield: 68%; ¹H NMR (500MHz, CDCl₃): δ = 7.34 (dd, *J* = 7.5, 1.6 Hz, 1H), 7.07 – 7.03 (m, 1H), 6.90 (td, *J* = 7.5, 1.1 Hz, 1H), 6.84 (d, *J* = 8.1 Hz, 1H), 5.85 (s, 1H), 5.56 (q, *J* = 6.5 Hz, 1H), 1.60 (d, *J* = 6.5 Hz, 3H), 1.32 (s, 9H); ¹³C NMR (125MHz, CDCl₃): δ = 165.2, 152.3, 143.4, 127.6, 121.1, 118.9, 118.9, 117.0, 116.1, 100.3, 73.0, 33.0, 29.1, 22.0; HRMS calcd for C₁₆H₁₈O₂: 242.1307, found: 242.1310.

8-methoxy-4-methyl-2-phenyl-4H-furo[3,2-c]chromene (**2p**)

Yellow oil; Yield: 83%; ¹H NMR (500MHz, CDCl₃): δ = 7.72 (dd, *J* = 5.1, 3.4 Hz, 2H), 7.41 (dd, *J* = 10.7, 4.9 Hz, 2H), 7.30 – 7.26 (m, 1H), 7.03 (d, *J* = 3.0 Hz, 1H), 6.83 (d, *J* = 8.8 Hz, 1H), 6.67 (dd, *J* = 8.8, 3.0 Hz, 1H), 6.54 (s, 1H), 5.55 (q, *J* = 6.5 Hz, 1H), 3.83 (s, 3H), 1.64 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (125MHz, CDCl₃): δ = 154.4, 154.3, 146.6, 145.2, 130.4, 128.8, 127.6, 123.7, 121.5, 117.1, 117.0, 113.9, 104.5, 103.2, 72.4, 55.9, 21.6; HRMS calcd for C₁₉H₁₆O₃: 292.1099, found: 292.1101.

8-bromo-4-methyl-2-phenyl-4H-furo[3,2-c]chromene (**2q**)

Yellow oil; Yield: 77%; ¹H NMR (400MHz, CDCl₃): δ = 7.73 – 7.68 (m, 2H), 7.56 (d, *J* = 2.4 Hz, 1H), 7.44 – 7.38 (m, 2H), 7.34 – 7.26 (m, 1H), 7.18 (dd, *J* = 8.6, 2.4 Hz, 1H), 6.75 (d, *J* = 8.6 Hz, 1H), 6.52 (s, 1H), 5.63 (q, *J* = 6.5 Hz, 1H), 1.65 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (125MHz, CDCl₃): δ = 155.0, 151.6, 143.7,

130.8, 130.1, 128.8, 127.9, 123.8, 122.0, 121.5, 118.1, 113.5, 103.1, 73.1, 22.0; HRMS calcd for $C_{18}H_{13}BrO_2$: 340.0099, found: 340.0103.

8-chloro-4-methyl-2-(thiophen-3-yl)-4H-furo[3,2-c]chromene (2r)

White solid; Yield: 75%; mp 77-79 °C; ¹H NMR (400MHz, CDCl₃): δ = 7.55 (dd, J = 2.9, 1.2 Hz, 1H), 7.41 – 7.31 (m, 3H), 7.03 (dd, J = 8.6, 2.5 Hz, 1H), 6.79 (d, J = 8.6 Hz, 1H), 6.35 (s, 1H), 5.61 (q, J = 6.5 Hz, 1H), 1.64 (d, J = 6.5 Hz, 3H); ¹³C NMR (100MHz, CDCl₃): δ = 151.9, 151.0, 143.2, 131.8, 127.7, 126.5, 126.3, 124.5, 121.2, 119.6, 119.0, 117.5, 102.8, 73.0, 21.9; HRMS calcd for C₁₆H₁₁ClO₂S: 302.0168, found: 302.0171.

Methyl 4-(4H-furo[3,2-c]chromen-2-yl)benzoate (2s)

Yellow solid; Yield: 81%; mp 130-131 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.05 (d, J = 8.7 Hz, 2H), 7.72 (d, J = 8.7 Hz, 2H), 7.47 (dd, J = 7.5, 1.6 Hz, 1H), 7.17 – 7.09 (m, 1H), 6.97 (td, J = 7.5, 1.1 Hz, 1H), 6.88 (dd, J = 8.1, 1.1 Hz, 1H), 6.64 (s, 1H), 5.39 (s, 2H), 3.92 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 166.83, 153.32, 146.69, 134.34, 130.27, 129.06, 128.69, 123.29, 121.72, 119.81, 116.42, 115.96, 105.59, 65.81, 52.26 ppm; HRMS calcd for C₁₉H₁₄O₄: 306.0892, found: 306.0888.

2-phenyl-4H-furo[3,2-c]chromen-7-ol (2t)

White solid; Yield: 87%; mp 143-144 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, J = 7.1 Hz, 2H), 7.39 (t, J = 7.6 Hz, 2H), 7.34 (d, J = 8.1 Hz, 1H), 7.26 (t, J = 8.1 Hz, 1H), 6.51 (s, 1H), 6.48 – 6.41 (m, 2H), 5.38 (s, 2H), 5.03 (s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 156.19, 154.60, 153.67, 145.69, 130.65, 128.86, 127.44, 123.60, 120.61, 113.32, 110.50, 108.59, 104.07, 103.33, 66.35 ppm; HRMS calcd for C₁₇H₁₂O₃: 264.0786, found: 264.0788.

2-phenyl-4,5,6,7-tetrahydrobenzofuran (2u)

Colorless oil; Yield: 61%; ¹H NMR (400MHz, CDCl₃): δ = 7.65 – 7.59 (m, 2H), 7.38 – 7.32 (m, 2H), 7.23 – 7.17 (m, 1H), 6.48 (s, 1H), 2.70 – 2.63 (m, 2H), 2.47 (m, 2H), 1.92 – 1.82 (m, 2H), 1.80 – 1.72 (m, 2H); ¹³C NMR (125MHz, CDCl₃): δ = 151.6, 150.8, 131.5, 128.6, 126.6, 123.3, 119.0, 106.0, 23.3, 23.2, 23.1, 22.2; HRMS calcd for C₁₄H₁₄O: 198.1045, found: 198.1050.

2-isopropyl-4H-furo[3,2-c]chromene (**2v**)

Colorless oil; Yield: 82%; ¹H NMR (500MHz, CDCl₃): δ = 7.34 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.06 (td, *J* = 8.0, 1.5 Hz, 1H), 6.94 – 6.90 (m, 1H), 6.86 – 6.82 (m, 1H), 5.88 (s, 1H), 5.35 (s, 2H), 3.04 – 2.97 (m, 1H), 1.30 (d, *J* = 6.9 Hz, 6H); ¹³C

NMR (125MHz, CDCl₃): δ = 162.8, 152.5, 143.8, 127.7, 121.3, 118.9, 117.2, 115.9, 114.1, 101.3, 66.1, 28.1, 21.2; HRMS calcd for C₁₄H₁₄O₂: 214.0994, found: 214.0996.

2-(2-hydroxyphenyl)-5-phenylfuran-3-carbaldehyde (2w)

White solid; Yield: 72%; mp 131-133 °C; ¹H NMR (500MHz, DMSO- d_6): $\delta = 10.39$ (s, 1H), 9.97 (s, 1H), 7.84 – 7.81 (m, 2H), 7.62 (dd, J = 8.2, 1.6 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 7.41 – 7.34 (m, 2H), 7.33 (s, 1H), 7.08 – 7.05 (m, 1H), 7.01 (t, J = 7.6 Hz, 1H); ¹³C NMR (125MHz, DMSO- d_6): $\delta = 187.2$, 158.4, 155.5, 154.0, 132.3, 131.1, 129.6, 129.5, 128.9, 124.9, 124.4, 120.1, 117.0, 116.2, 104.1; HRMS calcd for C₁₇H₁₂O₃: 264.0786, found: 264.0790.

90 80 f1 (ppm)

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2012

