Supporting Information

For

A Nanocomposite Gel Based on 1D Coordination Polymers and Nanoclusters Reversibly Gelate Water upon Heating

Jin-Ji Wu, Man-Li Cao, Jian-Yong Zhang* and Bao-Hui Ye*

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Department of Chemistry, Guangdong University of Education, Guangzhou 510303, China

Fig. S1. XPS survey of complex $3 \cdot NO_3$. No peak is found in the range from 770 to 800 eV indicating that all the metal ions in $3 \cdot NO_3$ are copper.⁸

Fig. S2. TGA curve of 3·NO₃, revealing that there were 32 lattice water molecules in 3·NO₃.

Fig. S3. Comparison of Raman spectra of 2 (a), $3 \cdot NO_3$ (b), 1 (c), S (d), G (e), $Cu(OAc)_2 \cdot H_2O$ (f); and the magnified region of 1650 - 1750 cm⁻¹ (right).

Figure S4. Comparison of IR spectra of $Cu(OAc)_2 \cdot H_2O$ (a), filtrate (b), $3 \cdot NO_3$ (c), 1 (d), 2 (e); and the magnified region of 820 - 740 cm⁻¹ for b, c, d and e (right).

Figure S3. Representation of the inner coordination spheres of Cu_9 cluster for complex 3·NO₃ (only atoms in the coordination geometries of the metal centers was present for clarity).

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cu1	O9	2.204(2)	Cu5	N16	2.032(3)
Cu1	O5	1.971(2)	Cu5	N17	2.012(3)
Cu1	O12	1.929(3)	Cu6	09	1.973(2)
Cu1	N11	2.048(3)	Cu6	O16	2.139(3)
Cu1	N12	2.004(3)	Cu6	O23	1.934(3)
Cu2	O9	1.932(2)	Cu6	N10	2.058(3)
Cu2	O22	1.965(3)	Cu6	N9	1.990(3)
Cu2	N5	2.019(3)	Cu7	01	2.396(2)
Cu2	N4	2.053(3)	Cu7	O6	1.941(2)
Cu2	017	2.237(2)	Cu7	O5	1.953(2)
Cu3	O8	1.973(2)	Cu7	O14	1.970(3)
Cu3	O19	2.144(3)	Cu7	O13	1.968(3)
Cu3	O21	1.943(3)	Cu8	O5	2.281(2)
Cu3	N6	2.056(3)	Cu8	N20	2.030(3)
Cu3	N7	1.998(3)	Cu8	N19	2.038(3)
Cu4	O8	1.937(2)	Cu8	07	1.886(3)
Cu4	O20	1.957(3)	Cu8	O11	1.966(3)
Cu4	O18	2.264(3)	Cu9	O6	2.360(2)
Cu4	N2	2.037(3)	Cu9	N14	2.040(3)
Cu4	N1	2.013(3)	Cu9	O10	1.955(3)
Cu5	O8	2.243(2)	Cu9	07	1.895(3)
Cu5	O6	1.951(2)	Cu9	N15	2.013(3)
Cu5	O15	1.938(3)			

Table S2. Selected bond lengths involving the coordination geometries of the metal centers.

Table S3. Selected bond angles involving the coordination geometries of the metal centers.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O5	Cu1	O9	103.80(9)	O15	Cu5	N16	88.38(12)
O5	Cu1	N11	148.70(11)	O15	Cu5	N17	168.17(12)
O5	Cu1	N12	93.60(11)	N16	Cu5	O8	100.29(11)

012	Cu1	O9	90.32(10)	N17	Cu5	O8	92.25(10)
O12	Cu1	O5	96.98(11)	N17	Cu5	N16	79.81(13)
012	Cu1	N11	88.77(12)	O9	Cu6	O16	109.02(10)
012	Cu1	N12	168.36(12)	O9	Cu6	N10	144.56(11)
N11	Cu1	09	106.93(10)	O9	Cu6	N9	97.05(11)
N12	Cu1	09	91.86(10)	O23	Cu6	09	90.79(11)
N12	Cu1	N11	79.65(12)	O23	Cu6	O16	93.85(11)
O9	Cu2	O22	93.08(10)	O23	Cu6	N10	89.00(12)
O9	Cu2	N5	166.11(12)	O23	Cu6	N9	168.55(12)
O9	Cu2	N4	95.00(11)	N10	Cu6	O16	106.35(11)
O9	Cu2	O17	101.01(10)	N9	Cu6	O16	91.47(11)
022	Cu2	N5	90.49(12)	N9	Cu6	N10	79.76(12)
O22	Cu2	N4	167.78(12)	O6	Cu7	O1	93.44(9)
022	Cu2	O17	97.16(10)	O6	Cu7	O5	94.58(10)
N5	Cu2	N4	79.56(12)	O6	Cu7	O14	90.76(11)
N5	Cu2	017	91.84(11)	O6	Cu7	O13	170.42(11)
N4	Cu2	017	90.29(11)	O5	Cu7	01	87.27(9)
08	Cu3	O19	107.35(10)	O5	Cu7	O14	170.63(11)
08	Cu3	N6	142.24(11)	O5	Cu7	O13	92.96(11)
08	Cu3	N7	97.04(11)	014	Cu7	01	100.12(10)
O21	Cu3	08	92.35(11)	O13	Cu7	01	92.82(10)
O21	Cu3	O19	89.56(11)	O13	Cu7	O14	81.00(11)
O21	Cu3	N6	89.05(12)	N20	Cu8	O5	93.35(10)
O21	Cu3	N7	168.86(12)	N20	Cu8	N19	79.60(12)
N6	Cu3	O19	110.39(11)	N19	Cu8	O5	99.59(10)
N7	Cu3	O19	93.34(11)	07	Cu8	O5	95.98(10)
N7	Cu3	N6	79.86(13)	07	Cu8	N20 ¹	170.67(11)
08	Cu4	O20	95.01(10)	07	Cu8	N19 ¹	98.79(12)
08	Cu4	O18	100.09(9)	07	Cu8	O11	92.98(12)
08	Cu4	N2	95.88(11)	011	Cu8	O5	96.80(13)
08	Cu4	N1	162.13(11)	O11	Cu8	N20 ¹	85.91(13)
O20	Cu4	O18	93.06(10)	O11	Cu8	N19 ¹	158.66(15)
O20	Cu4	N2	169.05(11)	N14	Cu9	O6	101.14(10)
O20	Cu4	N1	89.73(11)	O10	Cu9	O6	106.58(12)
N2	Cu4	O18	86.11(11)	O10	Cu9	N14	148.98(13)
N1	Cu4	O18	96.84(10)	O10	Cu9	N15	86.06(14)
N1	Cu4	N2	79.54(12)	07	Cu9	O6	88.71(10)
O6	Cu5	08	104.68(9)	07	Cu9	N14	100.44(12)
O6	Cu5	N16	154.72(12)	07	Cu9	O10	93.91(12)
O6	Cu5	N17	95.15(11)	07	Cu9	N15	179.74(13)
O15	Cu5	08	90.53(10)	N15	Cu9	O6	91.05(11)
O15	Cu5	O6	95.26(11)	N15	Cu9	N14	79,71(13)

References:

[1] Handbook of X-ray photoelectron Specroscopy, C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Perkin-Elmer Corp. 1979, 78-83.