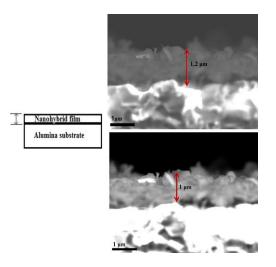

TABLE


Table 1 Vapor pressure of acetone, benzene, toluene and ethanol

Sl. No.	Hazardous	Solvent	Vapor
	waste		pressure
	$code^{\ddagger}$		(Nm-2)
1	F003	Acetone	31989.47
2	F005	Benzene	12262.63
3	F005	Toluene	3794.75
4	D001	Ethanol	940.17

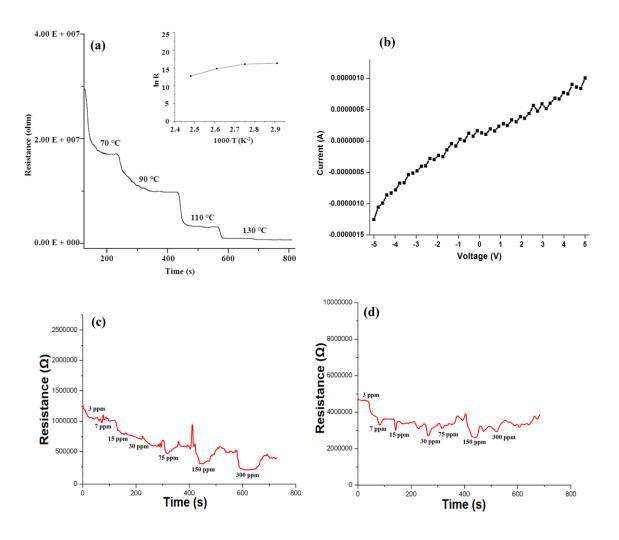

[‡]Code of Federal Regulations (40 CFR) Part 261

Fig. S1 (a) Preparation of the nanohybrid in stepwise procedure (1) swelling of bentonite (2) anilinium salt (3) anilinium salt absorbed onto bentonite (4) formation of the nanohybrid, and **(b)** dispersion stability of the nanohybrid in different organic solvents like tetrahydrofuran (THF), dimethylacetamide (DMAc) and dimethyl sulphoxide (DMSO).

Fig. S2 FE-SEM images of the nanohybrid film coated onto the alumina substrate with (a) ruthenium and (b) silver electrodes.

Fig. S3 (a) Change of resistance at variable temperatures as a function of time with an inset of Arrhenius plot of natural logarithm of change in resistance versus reciprocal of temperature for the nanohybrid, (b) I-V characteristic curve of the prepared nanohybrid, (c) Variation of resistance of the ruthenium electrode towards acetone as a function of time and, (d) Variation of resistance of the silver electrode towards acetone as a function of time.

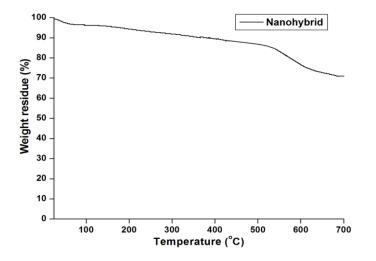


Fig. S4 TGA thermogram of the prepared nanohybrid.