Pot, Atom and Step Economy Synthesis: A Diversity-Oriented Approach to Construct 2-substituted Pyrrolo[2,1-f][1,2,4]triazin-4(3H)-ones

Haoyue Xiang, Yanhong Chen, Qian He, Yuyuan Xie and Chunhao Yang*

^aState Key Laboratory of Drug Research, Shanghai Insitute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China. Fax: 86-21-50806770; Tel: 86-21-50806770; E-mail: <u>chyang@mail.shcnc.ac.cn</u>.

Supporting Information

List of contents	
Experiment procedures	s2-s13
Notes and references	s14
X-ray crystallography of compound D17, D23,	D30s15-s17
¹ H NMR, ¹³ C NMR······	

1. Experimental procedures

General information

Unless otherwise noted, all solvents and other reagents are commercially available and used without further purification. ¹H and ¹³C NMR spectra were recorded on Varian Mercury-300/400 and Varian Mercury-400/500 spectrometers. MS and HRMS spectra were performed on a Finnigan MAT 95 spectrometer. Melting points were measured by Büchi 510 melting point apparatus without further corrected.

Preparation of the starting material substituted 3-formyl-4-chromenones¹

Dimethylformamide (6.0 mL) was cooled in ice-cold water and 2-hydroxy acetophenone (0.01 mmol) was added to this with vigorous stirring; phosphorus oxychloride (2.0 mL) was slowly added into the solution. The pink colour thick mass was kept overnight at room temperature. The mixture was then decomposed by cold water and extracted by EtOAc (3×100 mL). Concentrated under reduced pressure, the crude product was further purified by column chromatography (PE: EtOAc 10:1).

6-Methyl-4-oxo-4*H*-chromene-3-carbaldehyde (B2)

Yellow solid (64%). Mp 164-166 °C. ¹H NMR (300 MHz, CDCl₃) δ = 10.38 (s, 1H), 8.52 (s, 1H), 8.07 (s, 1H), 7.55 (d, 1H, *J* = 8.6 Hz), 7.42 (d, 1H, *J* = 8.6 Hz), 2.48 (s, 3H). IR (KBr) 3082, 2856, 1695, 1655, 1616, 1485, 949, 891, 825, 773, 545 486 cm⁻¹.

6-Chloro-4-oxo-4H-chromene-3-carbaldehyde (B3)

Yellow solid (89%). Mp 94-96 °C. ¹H NMR (300 MHz, CDCl₃) δ = 10.36 (s, 1H), 8.54 (s, 1H), 8.25 (d, 1H, *J* = 2.6 Hz), 7.70 (dd, 1H, *J* = 8.9, 2.6 Hz), 7.51 (d, 1H, *J* = 8.9 Hz). IR (KBr) 3074, 2977, 2881, 1651, 1623, 1604, 1568, 1463, 1443, 1388, 1338, 1307, 1089, 1049, 997, 923, 842, 636, 543 cm⁻¹.

Preparation of the starting material compound A

Methyl 1-amino-5-bromo-1*H*-pyrrole-2-carboxylate

Preparation according to the literature (WO2007/150001 A1, 2007), K_2CO_3 was used here to instead of NaOH. Yellow oil.¹H NMR (400 MHz, CDCl₃) δ 6.82 (d, *J* = 4.5 Hz, 1H), 6.11 (d, J = 4.5 Hz, 1H), 5.65 (s, 2H), 3.82 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.40, 120.73, 115.54, 111.26, 108.62, 51.36.

1-Amino-5-bromo-1*H*-pyrrole-2-carboxamide (A2)

Ammonolysis from methyl 1-amino-5-bromo-1*H*-pyrrole-2-carboxylate using NH₃ in MeOH at 100 °C. Yellow solid. Mp 152-153 °C.¹H NMR (400 MHz, DMSO-*d6*) δ 8.06 (br s, 1H), 7.26 (br s, 1H), 6.75 (d, *J* = 4.5 Hz, 1H), 6.57 (br s, 2H), 6.13 (d, *J* = 4.5 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 162.51, 124.90, 111.69, 108.34, 107.59. m/z (EI): 205[M⁺, Br⁸¹, 46%], 447[M⁺, Br⁷⁹, 49%], 188 (Br⁸¹, 100%), 186 (Br⁷⁹, 98%), 79 (38%). calcd for C₅H₆BrN₃O, 202.9694; found; 202.9678 [M⁺, Br⁷⁹].

Ethyl 1-amino-5-methyl-1*H*-pyrrole-2-carboxylate

Preparation according to the literature.² Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 6.77 (d, *J* = 4.2 Hz, 1H), 5.80 (dd, *J* = 4.2 Hz, 1H), 5.36 (s, 2H), 4.27 (q, *J* = 7.1 Hz, 2H), 1.34 (t, *J* = 7.1 Hz, 3H).

1-Amino-5-methyl-1H-pyrrole-2-carboxamide (A3)

Ammonolysis according to the literature from ethyl 1-amino-5-methyl-1H-pyrrole-2-carboxylate.³ Yellow solid. Mp 170-171 °C.¹H NMR (400 MHz, DMSO-*d*6) δ 7.93 (br s, 1H), 6.97 (br s, 1H), 6.58 (d, J = 4.4 Hz, 1H), 6.38 (br s, 2H), 5.72 (d, J = 4.4 Hz, 1H), 2.15 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*6) δ 163.61, 133.14, 122.45, 110.43, 103.77, 11.66. *m*/*z* (EI):139 [M⁺, 92%], 122 (100%), 94 (28%).calcd for C₆H₉N₃O, 139.0746;found, 139.0746 [M⁺].

Typical procedure for synthesis of compound D1-40

A mixture of **A** (0.4mmol), **B** (0.4mmol), and CuCl₂·H₂O (0.4mmol) in DMSO (5mL) was kept in the pre-heated 120 °C oil bath for 2h under air atmosphere. After the starting materials converted to the intermediate **C** completely, NaOAc (4 equiv.) and amidines or hydrazines (0.4mmol) were added, and then kept the reaction for another 1h. After the reaction was complete, the reaction was cooled to room temperature, and then diluted by water (40 mL). The mixtures was extracted with EtOAc (3 x 30mL), washed with water and brine, dried over anhydrous Na₂SO₄ and filtered. The solvent was removed under vacuum. The residue was applied on a silica-gel column (using CH₂Cl₂/MeOH=80/1) to afford yellow solid.

Characterization of the compounds

2-(4-Oxo-4H-chromen-3-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (C1)

White solid. Mp 282-284 °C. ¹H NMR (300 MHz, DMSO-*d*6) δ 11.79 (s, 1H), 8.93 (s, 1H), 8.16 (d, J = 7.9 Hz, 1H), 7.90 (t, J = 7.6 Hz, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.65 (s, 0H), 7.59 (t, J = 7.7 Hz, 1H), 6.95 (d, J = 5.5 Hz, 1H), 6.59 (dd, J = 4.3, 2.6 Hz, 1H).¹³C NMR (126 MHz, DMSO-*d*6) δ 175.07, 158.58, 156.06, 154.39, 142.78, 135.64, 126.99, 125.81, 123.84, 122.00, 119.22, 119.06, 116.79, 111.04, 108.08. *m*/*z* (EI):279 [M ⁺, 100%], 108 (60%), 80 (10%).calcd for C₁₅H₉N₃O₃, 279.0644; found, 279.0641 [M ⁺].

2-(4-(2-Hydroxyphenyl)-2-phenylpyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one(D1)

Yellow solid (71%). Mp 212-214 °C.¹H NMR (300 MHz, DMSO-*d*6) δ 11.90 (br 1H), 10.06 (br, 1H), 9.09 (s, 1H), 8.50-8.47 (m, 2H), 7.73 (dd, J = 7.7, 1.7 Hz, 1H), 7.63 – 7.51 (m, 3H), 7.45 – 7.37 (m, 1H), 7.28 (ddd, J = 8.2, 7.3, 1.8 Hz, 1H), 6.99 (td, J = 7.5, 1.1 Hz, 1H), 6.93 – 6.84 (m, 1H), 6.75 (dd, J = 8.2, 0.9 Hz, 1H), 6.56 – 6.43 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 164.05, 163.09, 158.62, 155.40, 155.30, 146.14, 136.99, 132.29, 132.00, 131.95, 129.37, 128.57, 124.53, 123.76, 121.74, 119.77, 118.99, 115.83, 110.80, 107.68. *m*/*z* (EI):381 [M ⁺, 100%], 364 (62%), 109 (26%).calcd for C₂₂H₁₅N₅O₂, 381.1226;found, 381.1225 [M ⁺].

2-(4-(2-Hydroxyphenyl)-2-(p-tolyl)pyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D2)

Yellow solid (71%). Mp 258-260 °C. ¹H NMR (300 MHz, DMSO-*d*6) δ 11.91 (s, 1H), 10.03 (s, 1H), 9.06 (s, 1H), 8.39 (d, *J* = 8.1 Hz, 2H), 7.73 (dd, *J* = 7.6, 1.5 Hz, 1H), 7.46 – 7.34 (m, 3H), 7.29 (t, *J* = 7.6 Hz, 1H), 7.00 (t, *J* = 7.6 Hz, 1H), 6.90 (dd, *J* = 4.3, 1.6 Hz, 1H), 6.75 (d, *J* = 8.1 Hz, 1H), 6.51 (dd, *J* = 4.2, 2.8 Hz, 1H), 2.41 (s, 3H).¹³C NMR (101 MHz, DMSO-*d*6) δ 163.60, 162.52, 158.05, 154.91, 154.80, 145.69, 141.45, 133.86, 131.77, 131.45, 129.50, 128.09, 124.07, 122.97, 121.25, 119.26, 118.51, 115.34, 110.29, 107.17, 21.09. *m*/*z* (EI):395 [M ⁺, 100%], 378 (71%), 109 (26%).calcd for C₂₃H₁₇N₅O₂, 395.1382;found, 395.1381 [M ⁺].

2-(2-(4-Chlorophenyl)-4-(2-hydroxyphenyl)pyrimidin-5-yl)pyrrolo[2,1-*f***][1,2,4]triazin-4(3***H***)-one (D3) Yellow solid (69%). Mp 268-270 °C. ¹H NMR (300 MHz, DMSO-***d***6) \delta 11.93 (s, 1H), 10.00 (s, 1H), 9.09 (s, 1H), 8.49 (d,** *J* **= 7.9 Hz, 2H), 7.73 (d,** *J* **= 7.7 Hz, 1H), 7.63 (d,** *J* **= 7.9 Hz, 2H), 7.43 – 7.37 (m, 1H), 7.28 (t,** *J* **= 7.8 Hz, 1H), 6.98 (t,** *J* **= 7.5 Hz, 1H), 6.89 (dd,** *J* **= 4.3, 1.6 Hz, 1H), 6.74 (d,** *J* **= 8.2 Hz, 1H), 6.49 (dd,** *J* **= 4.3, 2.7 Hz, 1H). ¹³C NMR (126 MHz, DMSO-***d***6) \delta 163.19, 163.07, 158.70, 155.37, 155.28, 146.04, 136.87, 135.85, 132.31, 132.06, 130.33, 129.49, 124.45, 123.96, 121.75, 119.77, 119.00, 115.81, 110.81, 107.68.** *m***/***z* **(EI):417 [M ⁺,Cl³⁷ 32%], 415 [M ⁺,Cl³⁵ 100%], 398 (62%), 400 (18%), 109 (46%). calcd for C₂₂H₁₄ClN₅O₂, 415.0836;found, 415.0839 [M ⁺].**

2-(2-(4-Bromophenyl)-4-(2-hydroxyphenyl)pyrimidin-5-yl)pyrrolo[2,1-*f***][1,2,4]triazin-4(3***H***)-one (D4) Yellow solid (69%). Mp 279-281 °C.¹H NMR (300 MHz, DMSO-***d***6) \delta 11.95 (s, 1H), 10.02 (s, 1H), 9.11 (s, 1H), 8.43 (d,** *J* **= 8.5 Hz, 2H), 7.79 (d,** *J* **= 8.5 Hz, 2H), 7.74 (d,** *J* **= 6.8 Hz, 1H), 7.43-7.40 (m, 1H), 7.30 (t,** *J* **= 7.3 Hz, 1H), 7.00 (t,** *J* **= 7.6 Hz, 1H), 6.91 (d,** *J* **= 3.0 Hz, 1H), 6.75 (d,** *J* **= 8.2 Hz, 1H), 6.57 – 6.42 (m, 1H). ¹³C NMR (126 MHz, DMSO-***d***6) \delta 163.20, 158.70, 155.36, 155.28, 146.04, 136.20, 132.43, 132.31, 132.06, 130.54, 125.89, 124.44, 124.00, 121.75, 119.77, 119.00, 115.81, 110.81, 107.69.** *m***/***z* **(EI):461 [M ⁺,Br⁸¹ 96%], 459 [M ⁺,Br⁷⁹ 100%], 444 (51%), 442 (53%), 109 (61%). calcd for C₂₂H₁₄BrN₅O₂, 459.0331;found, 459.0331 [M ⁺].**

2-(2-(4-Aminophenyl)-4-(2-hydroxyphenyl)pyrimidin-5-yl)pyrrolo[2,1-*f***][1,2,4**]**triazin-4(3***H***)-one (D5)** Yellow solid (76%). Mp 265-266 °C. ¹H NMR (400 MHz, DMSO-*d*6) δ 11.83 (br s, 1H), 10.11 (br s, 1H), 8.90 (s,

1H), 8.19 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 7.7 Hz, 1H), 7.42 (s, 1H), 7.26 (d, J = 7.6 Hz, 1H), 6.98 (d, J = 7.5 Hz, 1H), 6.92 – 6.72 (m, 2H), 6.67 (d, J = 7.6 Hz, 2H), 6.51 (s, 1H), 5.86 (br s, 2H).¹³C NMR (126 MHz, DMSO-*d*6) δ

164.55, 162.58, 158.20, 155.53, 155.28, 152.76, 146.45, 132.02, 131.69, 130.27, 124.60, 123.82, 121.63, 121.47, 119.60, 118.93, 115.87, 113.82, 110.67, 107.53. m/z (EI):396 [M ⁺, 100%], 379 (82%), 109 (36%). calcd for C₂₂H₁₆N₆O₂, 396.1335;found, 396.1334 [M ⁺].

2-(4-(2-Hydroxyphenyl)-2-(o-tolyl)pyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D6)

Yellow solid (76%). Mp 270-272 °C.¹H NMR (300 MHz, DMSO-*d*6) δ 11.96 (br s, 1H), 10.07 (br s, 1H), 9.12 (s, 1H), 7.96 (dd, J = 8.0, 1.7 Hz, 1H), 7.69 (dd, J = 7.8, 1.8 Hz, 1H), 7.48 – 7.32 (m, 4H), 7.27 (ddd, J = 8.3, 7.3, 1.8 Hz, 1H), 6.97 (td, J = 7.5, 1.0 Hz, 1H), 6.91 (dd, J = 4.3, 1.6 Hz, 1H), 6.76 (dd, J = 8.2, 1.0 Hz, 1H), 6.52 (dd, J = 4.3, 2.7 Hz, 1H), 2.61 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 167.05 (s), 162.58 (s), 158.13 (s), 155.38 (s), 155.28 (s), 146.16 (s), 137.65 (s), 137.57 (s), 132.16 (s), 131.94 (s), 131.85 (s), 131.06 (s), 130.38 (s), 126.47 (s), 124.42 (s), 122.99 (s), 121.71 (s), 119.73 (s), 118.99 (s), 115.86 (s), 110.81 (s), 107.68 (s), 21.74 (s). m/z (EI): 395 [100%], 302 (12%), 286 (14%). calcd for C₂₃H₁₇N₅O₂, 395.1382; found, 395.1387 [M⁺].

2-(4-(2-Hydroxyphenyl)-2-(3-methoxyphenyl)pyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D7)

Yellow solid (81%). Mp 210-212 °C.¹H NMR (300 MHz, DMSO-*d*6) δ 11.94 (s, 1H), 10.03 (s, 1H), 9.08 (s, 1H), 8.08 (d, J = 7.6 Hz, 1H), 8.00 (s, 1H), 7.73 (d, J = 7.4 Hz, 1H), 7.49 (t, J = 7.9 Hz, 1H), 7.40 (s, 1H), 7.28 (t, J = 7.7 Hz, 1H), 7.16 (d, J = 7.6 Hz, 1H), 6.99 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 4.1 Hz, 1H), 6.74 (d, J = 8.3 Hz, 1H), 6.50 (t, J = 3.4 Hz, 1H), 3.85 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 163.78, 163.03, 160.13, 158.57, 155.40, 155.27, 146.10, 138.44, 132.26, 131.99, 130.51, 124.49, 123.84, 121.74, 120.99, 119.79, 118.99, 117.75, 115.82, 113.41, 110.79, 107.66, 55.72. *m*/*z* (EI): 411 [M ⁺, 100%], 394 (62%), 109 (28%).calcd for C₂₃H₁₇N₅O₃, 411.1331; found, 411.1337.

2-(4-(2-Hydroxyphenyl)pyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D8)

Yellow solid (71%). Mp 276-278 °C.¹H NMR (300 MHz, DMSO-*d*6) δ 11.93 (br s, 1H), 10.05 (br s, 1H), 9.34 (s, 1H), 9.00 (s, 1H), 7.58 (d, *J* = 7.5 Hz, 1H), 7.39 (s, 1H), 7.25 (t, *J* = 7.4 Hz, 1H), 6.92 (t, *J* = 7.5 Hz, 1H), 6.89 (d, *J* = 3.3 Hz, 1H), 6.72 (d, *J* = 8.2 Hz, 1H), 6.49 (t, *J* = 3.0 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 162.61, 159.37, 157.96, 155.35, 155.23, 145.94, 132.07, 132.01, 125.73, 124.03, 121.75, 119.66, 118.98, 115.86, 110.81, 107.68. *m*/*z* (EI):305 [M⁺, 100%], 287 (84%), 109 (62%), 108 (40%).calcd for C₁₆H₁₁N₅O₂, 305.0913;found, 305.0914 [M⁺].

2-(4-(2-Hydroxyphenyl)-2-methylpyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D9)

Yellow solid (67%). Mp 236-238 °C.¹H NMR (300 MHz, DMSO-*d*6) δ 11.84 (s, 1H), 10.04 (s, 1H), 8.87 (s, 1H), 7.54 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.43 – 7.33 (m, 1H), 7.23 (td, *J* = 7.3, 1.8 Hz, 1H), 6.98 – 6.80 (m, 2H), 6.71 (d, *J* = 8.2 Hz, 1H), 6.49-6.47 (m, 1H), 2.72 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 168.53, 162.64, 158.06, 155.41, 155.26, 146.18, 132.02, 131.83, 124.07, 122.87, 121.70, 119.55, 118.93, 115.87, 110.74, 107.61, 26.23. *m*/*z* (EI):417 [M ⁺,Cl³⁷ 32%], 319 (100%), 302 (62%), 109 (42%).calcd for C₁₇H₁₃N₅O₂, 319.1069;found, 319.1071 [M ⁺].

2-(4-(2-Hydroxyphenyl)-2-isopropylpyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D10)

Yellow solid (78%). Mp 190-192 °C.¹H NMR (300 MHz, DMSO-*d*6) δ 11.85 (s, 1H), 10.12 (s, 1H), 8.92 (s, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.50 – 7.31 (m, 1H), 7.24 (t, J = 7.8 Hz, 1H), 6.92 (t, J = 7.5 Hz, 1H), 6.89 – 6.84 (m, 1H), 6.72 (d, J = 8.2 Hz, 1H), 6.52 – 6.44 (m, 1H), 3.26 - 3.19 (m, J = 14.2, 7.2 Hz, 1H), 1.34 (d, J = 6.9 Hz, 6H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 175.37, 162.53, 158.20, 155.52, 155.23, 146.22, 132.05, 131.87, 124.17, 123.01, 121.69, 119.64, 118.97, 115.91, 110.74, 107.62, 37.44, 22.03. *m*/z (EI):347 [M⁺, 100%], 330 (65%), 109 (34%). calcd for C₁₉H₁₇N₅O₂, 347.1382; found, 347.1380 [M⁺].

2-(2-(tert-Butyl)-4-(2-hydroxyphenyl)pyrimidin-5-yl)pyrrolo[2,1-*f*][1,2,4]triazin-4(3*H*)-one (D11)

Yellow solid (75%). Mp 136-138 °C. ¹H NMR (300 MHz, DMSO-*d*6) δ 11.84 (br s, 1H), 10.22 (br s, 1H), 8.95 (s, 1H), 7.59 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.39 (dd, *J* = 2.4, 1.9 Hz, 1H), 7.31 – 7.20 (m, 1H), 6.94 (t, *J* = 7.5 Hz, 1H), 6.89 (dd, *J* = 4.3, 1.6 Hz, 1H), 6.74 (d, *J* = 8.2 Hz, 1H), 6.50 (dd, *J* = 4.3, 2.7 Hz, 1H), 1.43 (s, 9H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 177.16, 162.06, 158.00, 155.64, 155.25, 146.30, 132.03, 131.90, 124.22, 122.56, 121.68, 119.70, 118.98, 115.98, 110.73, 107.62, 29.85. *m*/*z* (EI):361 [M⁺, 100%], 344 (54%), 109 (18%).calcd for C₂₀H₁₉N₅O₂, 361.1539;found, 361.1532 [M⁺].

2-(4-(2-Hydroxyphenyl)-2-methoxypyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D12)

Yellow solid (75%). Mp 216-218 °C. ¹H NMR (300 MHz, DMSO-*d*6) δ 11.80 (s, 1H), 9.97 (s, 1H), 8.79 (s, 1H), 7.61 – 7.50 (m, 1H), 7.35 dd, *J* = 7.5, 1.5 Hz 1H), 7.23 (td, *J* = 7.7, 1.8 Hz, 1H), 6.92 (t, *J* = 7.5 Hz, 1H), 6.86 (dd, *J* = 4.2, 1.5 Hz, 1H), 6.71 (d, *J* = 8.1 Hz, 1H), 6.47 (dd, *J* = 4.2, 2.7 Hz, 1H), 4.01 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 165.55, 165.52, 160.81, 155.33, 146.04, 132.02, 131.98, 124.14, 121.60, 120.10, 119.58, 118.89, 115.84, 110.66, 107.52, 55.49. *m/z* (EI):335 [M⁺, 100%], 318 (57%), 109 (60%). calcd for C₁₇H₁₃N₅O₃, 335.1018;found, 335.1018 [M⁺].

2-(2-Cyclopropyl-4-(2-hydroxyphenyl)pyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D13)

Yellow solid (78%). Mp 212-214 °C.¹H NMR (300 MHz, DMSO-*d*6) δ 11.78 (s, 1H), 10.01 (s, 1H), 8.80 (s, 1H), 7.53 (dd, *J* = 7.5, 1.2, 1H), 7.38-7.36 (m, 1H), 7.22 (td, *J* = 7.5, 1.5 Hz, 1H), 6.91 (t, *J* = 7.5 Hz, 1H), 6.86 (dd, *J* = 3.9, 1.3 Hz, 1H), 6.70 (d, *J* = 8.2 Hz, 1H), 6.47 (dd, *J* = 4.2, 2.7 Hz, 1H), 2.36-2.6 (m, 1H), 1.17-1.12 (m, 4H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 172.30, 162.50, 157.93, 155.39, 155.26, 146.23, 131.99, 131.77, 124.26, 122.60, 121.67, 119.58, 118.91, 115.82, 110.72, 107.58, 18.59, 11.51. *m/z* (EI):417 [M ⁺,Cl³⁷ 32%], 345 [M ⁺, 100%], 328 (64%), 109 (42%). calcd for C₁₉H₁₅N₅O₂, 345.1226;found, 345.1223 [M ⁺].

2-(4-(2-Hydroxyphenyl)-2-(phenoxymethyl)pyrimidin-5-yl)pyrrolo[2,1-*f***][1,2,4]triazin-4(3***H***)-one (D14) Yellow solid (78%). Mp 206-208 °C.¹H NMR (300 MHz, DMSO-***d***6) \delta 11.92 (br s, 1H), 10.15 (br s, 1H), 9.02 (s, 1H), 7.52 (dd,** *J* **= 7.7, 1.7 Hz, 1H), 7.38 (dd,** *J* **= 2.7, 1.6 Hz, 1H), 7.34 – 7.19 (m, 3H), 7.08 – 6.82 (m, 5H), 6.72 (d,** *J* **= 8.1 Hz, 1H), 6.49 (dd,** *J* **= 4.3, 2.7 Hz, 1H), 5.39 (s, 2H). ¹³C NMR (126 MHz, DMSO-***d***6) \delta 166.53, 162.99, 158.62, 158.59, 155.54, 155.23, 145.90, 132.17, 132.08, 130.00,124.18, 123.73, 121.75, 121.39, 119.65, 118.97, 115.96, 115.18, 110.82, 107.71, 70.40.***m***/***z* **(EI):411 [M⁺, 100%], 394 [46%], 318 (60%), 183 (20%).calcd for C₂₃H₁₇N₅O₃, 411.1331;found, 411.1343 [M⁺].**

$\label{eq:2-(2-(2-Chlorophenoxy)methyl)-4-(2-hydroxyphenyl)pyrimidin-5-yl)pyrrolo[2,1-f][1,2,4] triazin-4(3H)-one (D15)$

Yellow solid (77%). Mp 95-96 °C. ¹H NMR (400 MHz, DMSO-*d6*) δ 11.97 (s, 1H), 10.14 (s, 1H), 9.03 (s, 1H), 7.52 (dd, J = 7.8, 1.7 Hz, 1H), 7.47 (dd, J = 7.8, 1.6 Hz, 1H), 7.40 (dd, J = 2.7, 1.6 Hz, 1H), 7.32 – 7.22 (m, 2H), 7.18 (dd, J = 8.3, 1.5 Hz, 1H), 6.98 (td, J = 7.6, 1.4 Hz, 1H), 6.95 – 6.87 (m, 2H), 6.73 (dd, J = 8.2, 1.1 Hz, 1H), 6.51 (dd, J = 4.3, 2.7 Hz, 1H), 5.54(s, 2H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 165.64, 162.62, 158.33, 155.19, 154.90, 153.71, 145.58, 131.86, 131.78, 130.23, 128.32, 123.91, 123.39, 121.96, 121.50, 121.39, 119.30, 118.65, 115.61, 114.28, 110.46, 107.35, 70.61. *m/z* (EI):412 [M +,Cl37 32%], 410 [M ⁺,Cl³⁵ 100%], 392 (12%), 183 (16%). calcd for C₂₃H₁₆ClN₅O₃, 445.0942;found, 445.0948 [M +].

2-(2-Amino-4-(2-hydroxyphenyl)pyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D16)

Yellow solid (76%). Mp > 300 °C.¹H NMR (300 MHz, DMSO-*d*6) δ 11.56 (s, 1H), 10.68 (s, 1H), 8.44 (s, 1H), 7.42 (t, *J* = 2.1 Hz, 1H), 7.34 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.27 (s, 2H), 7.21 (td, *J* = 8.5, 8.0, 1.9 Hz, 1H), 6.84 (dd, *J* = 4.1, 1.8 Hz, 1H), 6.77 (t, *J* = 8.8 Hz, 1H), 6.51 – 6.42 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 163.89, 163.34, 160.12, 156.53, 155.26, 146.91, 131.69, 130.97, 122.98, 121.56, 119.14, 118.79, 116.61, 113.87, 110.54, 107.40. *m*/*z* (EI): 320 [M⁺, 100%], 302 (90%), 109 (84%), 108 (19%). calcd for C₁₆H₁₂N₆O₂, 320.1022;found, 320.1022 [M⁺].

Ethyl 2-amino-6-(2-hydroxyphenyl)-5-(4-oxo-3,4-dihydropyrrolo[2,1-*f*][1,2,4]triazin-2-yl)nicotinate (D17)

Yellow solid (84%). Mp 280-282 °C.¹H NMR (400 MHz, DMSO-*d*6) δ 11.60 (s, 1H), 10.66 (s, 1H), 8.32 (s, 1H), 7.72 (s, 2H), 7.44 (dd, J = 2.6, 1.7 Hz, 1H), 7.35 (dd, J = 7.7, 1.7 Hz, 1H), 7.20 (ddd, J = 8.0, 7.3, 1.7 Hz, 1H), 6.85 (dd, J = 4.3, 1.7 Hz, 1H), 6.83 – 6.75 (m, 2H), 6.50 (dd, J = 4.3, 2.6 Hz, 1H), 4.34 (q, J = 7.1 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 166.28, 159.84, 158.97, 156.34, 155.24, 147.75, 142.75, 131.30, 131.12, 123.97, 121.59, 119.07, 118.80, 116.61, 115.69, 110.57, 107.42, 103.11, 61.31, 14.68. *m*/*z* (EI): 391[100%], 373 (67%), 109 (67%). calcd for C₂₀H₁₇N₅O₄, 391.1281;found, 391.1280 [M⁺].

2-(5-(2-Hydroxyphenyl)-1-phenyl-1*H*-pyrazol-4-yl)pyrrolo[2,1-*f*][1,2,4]triazin-4(3*H*)-one (D18)

Yellow solid (77%). Mp > 300 °C.¹H NMR (400 MHz, DMSO-*d*6) δ 11.55 (s, 1H), 9.83 (s, 1H), 8.29 (s, 1H), 7.48 – 7.04 (m, 8H), 6.96 – 6.67 (m, 3H), 6.47 (dd, *J* = 4.2, 2.6 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 155.71, 155.12, 142.32, 140.20, 140.03, 139.92, 132.56, 131.26, 129.27, 128.17, 124.83, 121.46, 119.22, 118.65, 116.40, 115.99, 113.97, 110.64, 107.64.m/z (EI): 369 [M⁺, 100%], 351 (22%), 109 (62%). calcd for C₂₁H₁₅N₅O₂, 369.1226; found, 369.1221 [M⁺].

2-(5-(2-Hydroxyphenyl)-1-(p-tolyl)-1*H*-pyrazol-4-yl)pyrrolo[2,1-*f*][1,2,4]triazin-4(3*H*)-one (D19)

Yellow solid (72%). Mp > 300 °C.¹H NMR (300 MHz, DMSO-*d*6) δ 11.49 (br s, 1H), 9.79 (br s, 1H), 8.25 (s, 1H), 7.28 – 7.01 (m, 7H), 6.92 – 6.66 (m, 3H), 6.45 (dd, *J* = 4.3, 2.6 Hz, 1H), 2.26 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 155.70, 155.12, 142.36, 139.98, 139.82, 137.65, 132.56, 131.19, 129.70, 124.70, 121.44, 119.21, 118.64, 116.50, 115.98, 113.80, 110.62, 107.62, 20.98. *m*/*z* (EI): 383 [M⁺, 100%], 365 (20%), 109 (60%). calcd for C₂₂H₁₇N₅O₂, 383.1382; found; 383.1385 [M⁺]

2-(5-(2-Hydroxyphenyl)-1-(4-methoxyphenyl)-1H-pyrazol-4-yl)pyrrolo[**2**,**1**-*f*][**1**,**2**,**4**]triazin-4(*3H*)-one (**D20**) Yellow solid (65%). Mp 268-270 °C .¹H NMR (300 MHz, DMSO-*d*6) δ 11.46 (br s, 1H), 9.79 (br s, 1H), 8.23 (br s, 1H), 7.33 – 6.98 (m, 5H), 6.97 – 6.66 (m, 5H), 6.44 (t, *J* = 3.5 Hz, 1H), 3.72 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 158.92, 155.72, 155.14, 142.41, 138,88, 139.76, 133.09, 132.57, 131.15, 126.38, 121.43, 119.19, 118.63, 116.50, 115.98, 114.33, 113.56, 110.61, 107.61, 55.79. *m/z* (EI): 399 [M⁺, 100%], 381 (18%), 109 (49%). calcd for C₂₂H₁₇N₅O₃, 399.1331; found, 399.1347 [M⁺].

2-(1-(4-Fluorophenyl)-5-(2-hydroxyphenyl)-1H-pyrazol-4-yl)pyrrolo[2,1-*f*][1,2,4]triazin-4(3*H*)-one (D21) Yellow solid (75%). Mp 292-293 °C.¹H NMR (300 MHz, DMSO-*d*6) δ 11.52 (s, 1H), 9.84 (s, 1H), 8.26 (s, 1H), 7.34 – 7.24 (m, 2H), 7.25 – 7.09 (m, 5H), 6.84 (dd, *J* = 4.3, 1.7 Hz, 1H), 6.82 – 6.72 (m, 2H), 6.45 (dd, *J* = 4.3, 2.6 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 161.47 ((d, *J* = 245.57 Hz), 155.66, 155.14, 142.26, 140.24, 140.10, 136.46 (d, *J* = 2.9 Hz), 132.59, 131.36, 127.03 (d, *J* = 8.8 Hz), 121.46, 119.26, 118.64, 116.16 ((d, *J* = 23.44 Hz), 116.15, 116.06, 113.91 (s), 110.65, 107.64. *m/z* (EI): 387 [M⁺, 100%], 369 (22%), 109 (66%). calcd for C₂₁H₁₄FN₅O₂, 387.1132;found; 387.1135 [M⁺].

2-(1-(4-Chlorophenyl)-5-(2-hydroxyphenyl)-1*H*-pyrazol-4-yl)pyrrolo[2,1-*f*][1,2,4]triazin-4(3*H*)-one (D22) Yellow solid (64%). Mp > 300 °C.¹H NMR (300 MHz, DMSO-*d*6) δ 11.59 (br s, 1H), 9.81 (br s, 1H), 8.29 (s, 1H), 7.42 (d, *J* = 8.3 Hz, 2H), 7.27 -7.17 (m, 5H), 6.85 - 6.79 (m, 3H), 6.45 (s, 1H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 155.60, 155.12, 142.16, 140.57, 140.04, 138.93, 132.59, 132.58, 131.47, 129.33, 126.35, 121.49, 119.34, 118.65, 116.10, 116.04, 114.17, 110.67, 107.66. m/z (EI): 405 [M⁺, Cl³⁷, 37%], 403 [M⁺, Cl³⁵, 100%], 385 (29%), 109 (96%). calcd for C₂₁H₁₄ClN₅O₂, 403.0836;found; 403.0836 [M⁺].

2-(1-(4-Bromophenyl)-5-(2-hydroxyphenyl)-1H-pyrazol-4-yl)pyrrolo[2,1-*f*][1,2,4]triazin-4(3*H*)-one (D23) Yellow solid (68%). Mp > 300 °C.¹H NMR (300 MHz, DMSO-*d6*) δ 11.59 (br s, 1H), 9.81 (br s, 1H), 8.30 (s, 1H), 7.55 (d, *J* = 8.6 Hz, 2H), 7.40 – 7.04 (m, 5H), 6.82 (dt, *J* = 8.2, 4.5 Hz, 3H), 6.45 (dd, *J* = 4.1, 2.7 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 155.58, 155.11, 142.14, 140.61, 140.00, 139.35, 132.59, 132.26, 131.48, 126.61, 121.49, 121.03, 119.35, 118.65, 116.11, 116.03, 114.20, 110.67, 107.67. m/z (EI): 449 [M⁺, Br⁸¹, 86%], 447 [M⁺, Br⁷⁹, 80%], 431 (Br⁸¹, 18%), 433 (Br⁷⁹, 18%), 109 (74%). calcd for C₂₁H₁₄BrN₅O₂, 447.0331;found; 447.0338 [M⁺, Br⁷⁹].

$\label{eq:2-(5-(2-Hydroxyphenyl)-1-(4-(trifluoromethyl)phenyl)-1} H-pyrazol-4-yl) pyrrolo[2,1-f][1,2,4] triazin-4(3H)-one~(D24)$

Yellow solid (73%). Mp > 300 °C.¹H NMR (300 MHz, DMSO-*d*6) δ 11.65 (br s, 1H), 9.83 (br s, 1H), 8.35 (s, 1H), 7.75 (d, *J* = 8.1 Hz, 2H), 7.47 (d, *J* = 8.2 Hz, 2H), 7.33 – 7.14 (m, 3H), 6.91 – 6.73 (m, 3H), 6.51 – 6.41 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 155.55, 155.11, 143.29, 142.02, 141.12, 140.21, 132.58, 131.66, 128.13 (q, *J* = 32.4 Hz, CF₃C), 126.60 (q, *J* = 3.5 Hz, CF₃CC*H*), 124.33 (q, *J* = 272.7 Hz, *CF*₃), 124.90, 121.52, 119.43, 118.66, 116.15, 115.86, 114.62, 110.70, 107.69. *m*/*z* (EI): 437 [M⁺, 100%], 419 (30%), 109 (86%).calcd for C₂₂H₁₄F₃N₅O₂, 437.1100;found; 437.1103 [M⁺].

$\label{eq:2-Hydroxyphenyl} 4-(4-oxo-3,4-dihydropyrrolo[2,1-f][1,2,4] triazin-2-yl)-1 H-pyrazol-1-yl) benzonitrile (D25)$

Yellow solid (51%). Mp > 300 °C.¹H NMR (300 MHz, DMSO-*d*6) δ 11.64 (br s, 1H), 9.82 (br s, 1H), 8.35 (s, 1H), 7.85 (d, *J* = 8.4 Hz, 2H), 7.43 (d, *J* = 8.3 Hz, 2H), 7.35 – 7.11 (m, 3H), 6.97 – 6.70 (m, 3H), 6.46 (t, *J* = 3.5 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 155.51, 155.10, 143.59, 141.91, 141.39, 140.26, 133.66, 132.57, 131.76, 124.81, 121.54, 119.48, 118.66, 118.63, 116.21, 115.77, 114.84, 110.73, 110.46, 107.72. *m/z* (EI): 394 [M⁺, 100%], 376 (27%), 109 (70%). calcd for C₂₂H₁₄N₆O₂, 394.1178;found, 394.1177 [M⁺].

Yellow solid (52%). Mp 276-278 °C.¹H NMR (300 MHz, DMSO-*d*6) δ 11.64 (br s, 1H), 9.62 (br s, 1H), 8.35 (d, *J* = 2.6 Hz, 1H), 8.26 (s, 1H), 8.19 (dd, *J* = 8.6, 2.3 Hz, 1H), 7.58 (d, *J* = 8.6 Hz, 1H), 7.30 (t, *J* = 2.1 Hz, 1H), 7.26 – 7.08 (m, 2H), 6.85 (dd, *J* = 4.2, 1.8 Hz, 1H), 6.83 – 6.67 (m, 2H), 6.47 (dd, *J* = 4.2, 2.5 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 155.14, 155.08, 151.57, 148.91, 142.14, 141.88, 141.28, 140.30, 132.12, 130.96, 121.58, 120.58, 119.27, 119.05, 118.70, 116.53, 115.81, 114.69, 110.71, 107.67. *m*/*z* (EI): 450[M⁺, Br⁸¹, 98%], 448 [M⁺, Br⁷⁹, 100%], 433 (Br⁸¹, 50%), 431 (Br⁷⁹, 52%), 275(72%), 109 (74%). calcd for C₂₀H₁₃BrN₆O₂, 448.0283;found; 448.0282 [M⁺, Br⁷⁹].

2-(1-(2-Chlorophenyl)-5-(2-hydroxyphenyl)-1*H*-pyrazol-4-yl)pyrrolo[2,1-*f*][1,2,4]triazin-4(3*H*)-one (D27)

Yellow solid (66%). Mp > 300 °C.¹H NMR (300 MHz, DMSO-*d*6) δ 11.58 (br s, 1H), 9.82 (br s, 1H), 8.27 (s, 1H), 7.53 (dd, J = 8.1, 1.7 Hz, 1H), 7.49 – 7.31 (m, 3H), 7.22 (dd, J = 2.6, 1.5 Hz, 1H), 7.12 (ddd, J = 8.6, 7.3, 1.7 Hz, 1H), 7.01 (dd, J = 7.6, 1.7 Hz, 1H), 6.84 (dd, J = 4.2, 1.6 Hz, 1H), 6.74 (dd, J = 8.3, 1.2 Hz, 1H), 6.67 (td, J = 7.4, 1.2 Hz, 1H), 6.45 (dd, J = 4.2, 2.7 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 155.61, 155.19, 142.56, 141.59, 140.38, 137.33, 131.88, 131.48, 131.38, 131.15, 130.53, 130.39, 128.14, 121.44, 118.85, 118.70, 115.90, 115.61, 113.23, 110.59, 107.59. *m*/*z* (EI): 405 [M⁺, Cl³⁷, 92%], 403 [M⁺, Cl³⁵, 33%], 385 (33%), 109 (100%). calcd for C₂₁H₁₄ClN₅O₂, 403.0836; found; 403.0844 [M⁺, Cl³⁵].

2-(5-(2-Hydroxyphenyl)-1*H*-pyrazol-4-yl)pyrrolo[2,1-*f*][1,2,4]triazin-4(3*H*)-one (D28)

Yellow solid (48%). Mp 282-283 °C. ¹H NMR (300 MHz, DMSO-*d*6) δ 13.31 (br s, 1H), 11.54 (s, 1H), 9.87 (s, 1H), 8.08 (br s, 1H), 7.63 – 7.28 (m, 2H), 7.22 (t, *J* = 7.6 Hz, 1H), 6.87 (t, *J* = 7.1 Hz, 3H), 6.48 (d, *J* = 4.4 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 155.33, 155.10, 147.71, 143.80, 139.89, 139.44, 131.49, 131.12, 130.70,

121.40, 119.33, 118.79, 116.40, 116.20, 111.62, 110.43, 107.35. m/z (EI): 293 [M⁺, 100%], 275 (32%), 109 (60%), 108 (11%). calcd for C₁₅H₁₁N₅O₂, 293.0913;found, 293.0914 [M⁺].

2-(5-(2-Hydroxyphenyl)-1-methyl-1H-pyrazol-4-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D29)

Yellow solid (49%). Mp 291-292 °C.¹H NMR (300 MHz, DMSO-*d*6) δ 11.43 (br s, 1H), 9.92 (br s, 1H), 8.02 (s, 1H), 7.28 (d, *J* = 7.9 Hz, 2H), 7.16 (s, 1H), 7.04 – 6.85 (m, 2H), 6.81 (s, 1H), 6.42 (s, 1H), 3.65 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 155.60, 155.20, 142.63, 140.13, 138.42, 132.57, 131.26, 121.32, 119.30, 118.61, 116.22, 116.13, 112.06, 110.50, 107.49, 37.59. *m*/*z* (EI): 307 [M⁺, 100%], 289 (12%), 109 (53%). calcd for C₁₆H₁₃N₅O₂, 307.1069;found; 307.1069 [M⁺].

2-(5-(2-Hydroxyphenyl)-1-isopropyl-1*H*-pyrazol-4-yl)pyrrolo[2,1-*f*][1,2,4]triazin-4(3*H*)-one (D30)

Yellow solid (48%). Mp 292 °C decomposed.¹H NMR (500 MHz, DMSO-*d*6) δ 11.36 (s, 1H), 9.88 (s, 1H), 8.11 (s, 1H), 7.30 (td, *J* = 7.8, 1.8 Hz, 1H), 7.23 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.10 (t, *J* = 2.2 Hz, 1H), 6.94 (d, *J* = 8.2 Hz, 1H), 6.90 (t, *J* = 7.4 Hz, 1H), 6.80 (dd, *J* = 4.3, 1.8 Hz, 1H), 6.41 (dd, *J* = 4.2, 2.6 Hz, 1H), 4.22 (dt, *J* = 13.1, 6.6 Hz, 1H), 1.37 (d, *J* = 6.6 Hz, 3H), 1.29 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 155.74, 155.14, 142.61, 139.03, 138.65, 132.47, 131.21, 121.27, 119.44, 118.60, 116.39, 116.16, 111.50, 110.48, 107.50, 50.65, 23.23, 22.52. *m*/*z* (EI): 335 [M⁺, 100%], 320 (36%), 109 (66%). calcd for C₁₈H₁₇N₅O₂, 335.1382;found; 335.1385 [M⁺].

2-(1-(tert-Butyl)-5-(2-hydroxyphenyl)-1*H*-pyrazol-4-yl)pyrrolo[2,1-*f*][1,2,4]triazin-4(3*H*)-one (D31)

Yellow solid (65%). Mp 248-250 °C.¹H NMR (400 MHz, DMSO-*d*6) δ 11.51 (s, 1H), 9.76 (s, 1H), 8.38 (s, 1H), 7.45 – 7.37 (m, 2H), 7.18 (td, *J* = 8.1, 1.8 Hz, 1H), 6.89 – 6.80 (m, 3H), 6.49 (dd, *J* = 4.3, 2.6 Hz, 1H), 1.60 (s, 9H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 155.26, 155.24, 146.88, 143.64, 130.57, 129.84, 129.71, 121.40, 120.00, 119.27, 118.82, 116.09, 111.53, 110.45, 107.38, 59.42, 29.72. *m*/*z* (EI): 349 [M⁺, 100%], 331 (5%), 293 (46%), 275 (63%), 109 (90%). calcd for C₁₉H₁₉N₅O₂, 349.1539;found, 349.1542 [M⁺].

2-(1-(2-Hydroxyethyl)-5-(2-hydroxyphenyl)-1*H*-**pyrazol-4-yl)pyrrolo**[**2**,**1**-*f*][**1**,**2**,**4**]triazin-4(3*H*)-one (D32) Yellow solid (63%). Mp 210-212 °C.¹H NMR (300 MHz, DMSO-*d*6) δ 11.39 (br s, 1H), 9.86 (br s, 1H), 8.07 (s, 1H), 7.29 (t, *J* = 6.9 Hz, 2H), 7.17 – 7.06 (m, 1H), 6.98 – 6.84 (m, 2H), 6.81 (dd, *J* = 3.7, 1.9 Hz, 1H), 6.42 (dd, *J* = 4.3, 2.3 Hz, 1H), 4.82 (br s, 1H), 3.96 (t, *J* = 6.4 Hz, 2H), 3.66 (br s, 2H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 155.58, 155.18, 142.62, 140.37, 138.75, 132.81, 131.18, 121.30, 119.32, 118.60, 116.21, 116.14, 111.97, 110.49, 107.49, 60.05, 51.87. *m*/*z* (EI): 337 [M⁺, 100%], 319 (14%), 294 (22%), 109 (64%). calcd for C₁₇H₁₅N₅O₃, 337.1175;found; 337.1181 [M⁺].

2-(1-Benzyl-5-(2-hydroxyphenyl)-1*H*-pyrazol-4-yl)pyrrolo[2,1-*f*][1,2,4]triazin-4(3*H*)-one (D33)

Yellow solid (70%). Mp 258-259 °C.¹H NMR (300 MHz, DMSO-*d*6) δ 9.96 (br s, 1H), 8.10 (s, 1H), 7.37 – 7.09 (m, 6H), 7.04 – 6.91 (m, 3H), 6.90 – 6.77 (m, 2H), 6.42 (dd, J = 4.2, 2.5 Hz, 1H), 5.18 (s, 2H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 155.56, 155.16, 142.55, 140.42, 139.19, 137.37, 132.48, 131.37, 128.79, 127.89, 127.70, 121.34, 119.37, 118.61, 116.25, 116.06, 112.42, 110.53, 107.53, 53.26. *m/z* (EI): 383 [M⁺, 100%], 279 (17%), 109 (78%), 91 (78%). calcd for C₂₂H₁₇N₅O₂, 307.1069;found; 383.1382 [M⁺].

2-(4-(5-Chloro-2-hydroxyphenyl)-2-cyclopropylpyrimidin-5-yl)pyrrolo[2,1-*f*][1,2,4]triazin-4(3*H*)-one (D34) Yellow solid (58%). Mp 266-267 °C. yellow solid ¹H NMR (300 MHz, DMSO-*d*6) δ 11.85 (s, 1H), 10.25 (s, 1H), 8.85 (s, 1H), 7.55 (d, *J* = 2.7 Hz, 1H), 7.44 (dd, *J* = 2.6, 1.7 Hz, 1H), 7.29 (dd, *J* = 8.7, 2.8 Hz, 1H), 6.89 (dd, *J* = 4.3, 1.6 Hz, 1H), 6.72 (d, *J* = 8.7 Hz, 1H), 6.50 (dd, *J* = 4.3, 2.7 Hz, 1H), 2.43 – 2.27 (m, 1H), 1.24 – 1.03 (m, 4H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 172.61, 160.99, 158.07, 155.26, 154.22, 145.99, 131.38, 131.28, 126.22, 122.97, 122.72, 121.77, 118.89, 117.48, 110.78, 107.67, 18.64, 11.67. *m/z* (EI):381 [M ⁺,Cl³⁷ 36%], 379 [M ⁺, Cl³⁵ 100%], 362 (68%), 344 (38%), 109 (70%). calcd for C₁₉H₁₄ClN₅O₂, 379.0836;found,379.0835 [M ⁺].

2-(2-Cyclopropyl-4-(2-hydroxy-5-methylphenyl)pyrimidin-5-yl)pyrrolo[2,1-*f*][1,2,4]triazin-4(3*H*)-one (D35) Yellow solid (69%). Mp 235-236 °C. yellow solid ¹H NMR (300 MHz, DMSO-*d*6) δ 11.78 (s, 1H), 9.75 (s, 1H), 8.80 (s, 1H), 7.41 (br, 1H), 7.37 (br, 1H), 7.05 (d, *J* = 8.2 Hz, 1H), 6.88 (d, *J* = 3.9 Hz, 1H), 6.61 (d, *J* = 8.3 Hz, 1H), 6.49 (s, 1H), 2.34-2.30 (s, 1H), 2.26 (s, 3H), 1.14 (d, *J* = 7.8 Hz, 4H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 172.26, 162.46, 157.91, 155.27, 153.22, 146.35, 132.36, 132.19, 127.84, 123.93, 122.65, 121.69, 118.94, 115.70, 110.67, 107.53, 20.60, 18.62, 11.47. *m*/*z* (EI):359 [M⁺, 100%], 342 (66%), 109 (46%). calcd for C₂₀H₁₇N₅O₂, 359.1382;found, 359.1382[M⁺]

7-Bromo-2-(2-cyclopropyl-4-(2-hydroxyphenyl)pyrimidin-5-yl)pyrrolo[2,1-*f*][1,2,4]triazin-4(3*H*)-one (D36) Yellow solid (82%). Mp 278-279 °C.¹H NMR (300 MHz, DMSO-*d*6) δ 12.08 (br s, 1H), 9.93 (br s, 1H), 8.83 (s, 1H), 7.55 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.24 (td, *J* = 7.9, 1.8 Hz, 1H), 6.98 (d, *J* = 4.5 Hz, 1H), 6.93 (td, *J* = 7.5, 1.0 Hz, 1H), 6.73 - 6.63 (m, 2H), 2.33 (tt, *J* = 7.1, 5.4 Hz, 1H), 1.22 - 1.04 (m, 4H). ¹³C NMR (101 MHz, DMSO-*d*6) δ 174.00, 164.26, 159.21, 156.56, 156.13, 148.27, 125.87, 123.81, 121.65, 121.01, 117.10, 114.62, 109.84, 104.65, 20.07, 12.98. *m*/*z* (EI): 425[M⁺, Br⁸¹, 98%], 423 [M⁺, Br⁷⁹, 100%], 408 (Br⁸¹, 72%), 406 (Br⁷⁹, 68%), 252 (68%), 189 (56%). calcd for $C_{19}H_{14}BrN_5O_2$, 423.0330; found; 423.0331 [M⁺, Br⁷⁹].

2-(2-Cyclopropyl-4-(2-hydroxyphenyl)pyrimidin-5-yl)-7-methylpyrrolo[2,1-*f*][1,2,4]triazin-4(3*H*)-one (D37) Yellow solid (84%). Mp 244-245 °C.¹H NMR (300 MHz, DMSO-*d6*) δ 11.85 (s, 1H), 9.87 (s, 1H), 8.84 (s, 1H), 7.49 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.23 (t, *J* = 7.7 Hz, 1H), 6.93 (t, *J* = 7.5 Hz, 1H), 6.80 (d, *J* = 4.2 Hz, 1H), 6.67 (d, *J* = 8.3 Hz, 1H), 6.28 (d, *J* = 4.7 Hz, 1H), 2.40 – 2.24 (m, 1H), 1.93 (s, 3H), 1.21 – 1.06 (m, 4H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 172.32, 163.10, 157.46, 155.29, 154.96, 144.97, 131.52, 131.16, 129.61, 125.18, 122.66, 119.41, 118.02, 115.45, 109.72, 106.91, 18.58, 11.45, 10.56. *m*/*z* (EI): 359 [M⁺, 100%], 342 (72%), 123 (38%). calcd for C₂₀H₁₇N₅O₂, 359.1382;found, 359.1380 [M⁺].

2-(2-Cyclopropyl-4-(2-hydroxyphenyl)pyrimidin-5-yl)quinazolin-4(3H)-one (D38)

Yellow solid (82%). Mp 216-218 °C.¹H NMR (300 MHz, DMSO-*d*6) δ 12.32 (br s, 1H), 9.87 (br s, 1H), 8.82 (s, 1H), 8.09 (d, *J* = 7.9 Hz, 1H), 7.87 – 7.64 (m, 1H), 7.54 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.46 (dd, *J* = 8.3, 6.8 Hz, 1H), 7.40 (d, *J* = 8.2 Hz, 1H), 7.20 (t, *J* = 7.7 Hz, 1H), 6.90 (t, *J* = 7.4 Hz, 1H), 6.63 (d, *J* = 8.2 Hz, 1H), 2.38 – 2.24 (m, 1H), 1.18 – 1.06 (m, 4H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 171.98, 162.44, 162.26, 157.72, 155.51, 152.56, 149.35, 134.76, 132.00, 131.67, 127.73, 126.95, 126.19, 125.22, 124.42, 121.45, 119.46, 115.71, 18.59, 11.44. *m*/*z* (EI): 356 [M⁺, 60%], 339 (100%), 120 (30%). calcd for C₂₁H₁₆N₄O₂, 356.1273; found, 356.1281 [M⁺].

6-Chloro-2-(2-cyclopropyl-4-(2-hydroxyphenyl)pyrimidin-5-yl)quinazolin-4(3H)-one (D39)

Yellow solid (65%). Mp 228-230 °C.yellow solid ¹H NMR (300 MHz, DMSO-*d*6) δ 12.56 (s, 1H), 9.83 (s, 1H), 8.82 (s, 1H), 8.03 (s, 1H), 7.74 (d, J = 7.4 Hz, 1H), 7.55 (d, J = 7.5 Hz, 1H), 7.41 (d, J = 8.6 Hz, 1H), 7.19 (t, J = 7.4 Hz, 1H), 6.91 (t, J = 7.2 Hz, 1H), 6.62 (d, J = 8.4 Hz, 1H), 2.31 (s, 1H), 1.11 (s, 4H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 172.19, 162.47, 161.38, 157.71, 155.45, 153.22, 148.10, 134.93, 132.07, 131.75, 131.22, 129.98, 125.22, 125.00, 124.43, 122.70, 119.56, 115.70, 18.63, 11.49. *m*/*z* (EI):392 [M⁺, Cl³⁷ 25%], 390 [M⁺, Cl³⁵ 67%], 373 (100%), 154 (30%). calcd for C₂₁H₁₅ClN₄O₂, 390.0884; found, 390.0883 [M⁺].

2-(2-Cyclopropyl-4-(2-hydroxyphenyl)pyrimidin-5-yl)-6-methylquinazolin-4(3H)-one (D40)

Yellow solid (72%). Mp 272-273 °C.¹H NMR (300 MHz, DMSO-*d*6) δ 12.25 (s, 1H), 9.89 (s, 1H), 8.83 (s, 1H), 7.90 (s, 1H), 7.68 – 7.40 (m, 2H), 7.32 (d, *J* = 8.3 Hz, 1H), 7.24 - 7.18 (m, 1H), 6.91 (t, *J* = 7.1 Hz, 1H), 6.65 (d, *J* = 7.7 Hz, 1H), 2.43 (s, 3H), 2.37 - 2.29 (m, 1H), 1.30 – 0.94 (m, 4H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 171.88, 162.48, 162.20, 157.73, 155.59, 151.67, 147.40, 136.71, 136.0, 131.96 , 131.65, 127.64, 125.58, 125.28, 124.43, 121.23, 119.45, 115.75, 21.28, 18.58, 11.42. *m*/*z* (EI): 370 [M⁺, 52%], 353 (100%), 134 (26%). calcd for C₂₂H₁₈N₄O₂, 370.1430;found, 370.1430 [M⁺].

2. Notes and References

- 1. R.G. Nandgaonkar and V.N. Ingle, Asian J. Chem., 2005, 17, 2016-2018.
- J. Hynes, W. W. Doubleday, A. J. Dyckman, J. D. Godfrey, J. A. Grosso, S. Kiau and K. Leftheris, J Org Chem, 2004, 69, 1368-1371.
- 3. M. W. Bundesmann, S. B. Coffey and S. W. Wright, Tetrahedron Lett, 2010, 51, 3879-3882.

3. X-ray crystallography of compound D17, D23 and D30

Datablock H_Report_20120067_20120067.CIF - ellipsoid plot

D17

A specimen of $C_{20}H_{17}N_5O_4$ was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

The total exposure time was 5.58 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 11939 reflections to a maximum θ angle of 27.57° (0.77 Å resolution), of which 4057 were independent (average redundancy 2.943, completeness = 96.8%, R_{int} = 1.43%, R_{sig} = 1.23%) and 3810 (93.91%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 7.1731(2) Å, <u>b</u> = 9.0580(3) Å, <u>c</u> = 15.2735(5) Å, α = 96.9650(10)°, β = 93.3370(10)°, γ = 112.6080(10)°, volume = 903.39(5) Å³, are based upon the refinement of the XYZ-centroids of 9559 reflections above 20 $\sigma(I)$ with 4.931° < 2 θ < 55.07°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.926.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P -1, with Z = 2 for the formula unit, $C_{20}H_{17}N_5O_4$. The final anisotropic full-matrix least-squares refinement on F² with 273 variables converged at R1 = 3.43%, for the observed data and wR2 = 9.31% for all data. The goodness-of-fit was 1.055. The largest peak in the final difference electron density synthesis was 0.362 e⁻/Å³ and the largest hole was -0.232 e⁻/Å³ with an RMS deviation of 0.045 e⁻/Å³. On the basis of the final model, the calculated density was 1.439 g/cm³ and F(000), 408 e⁻.

The crystal structure for **D17** has been deposited at the Cambridge Crystallographic Data Center and allocated the reference no. CCDC 909193.

Datablock H_Report_20120067_20120067.CIF - ellipsoid plot

ured.

ing a narrowimum θ angle θ . θ . θ , Rint = $\theta = 10.4533(7)$ ised upon the corrected for ismission was

with Z = 2 for les converged ak in the final on of 0.056 e-

reference no.

D30

A specimen of $C_{18}H_{17}N_5O_2$ was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

The total exposure time was 1.90 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 9884 reflections to a maximum θ angle of 25.00° (0.84 Å resolution), of which 2794 were independent (average redundancy 3.538, completeness = 97.4%, R_{int} = 5.08%, R_{sig} = 4.98%) and 2495 (89.30%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 16.640(8) Å, <u>b</u> = 7.053(4) Å, <u>c</u> = 14.173(7) Å, β = 101.753(8)°, volume = 1628.5(14) Å³, are based upon the refinement of the XYZ-centroids of 7950 reflections above 20 $\sigma(I)$ with 5.001° < 2 θ < 55.31°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.807.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 1 21/c 1, with Z = 4 for the formula unit, $C_{18}H_{16}N_5O_2$. The final anisotropic full-matrix least-squares refinement on F^2 with 239 variables converged at R1 = 7.36%, for the observed data and wR2 = 21.33% for all data. The goodness-of-fit was 1.106. The largest peak in the final difference electron density synthesis was 0.448 e⁻/Å³ and the largest hole was -0.485 e⁻/Å³ with an RMS deviation of 0.089 e⁻/Å³. On the basis of the final model, the calculated density was 1.364 g/cm³ and F(000), 700 e⁻.

The crystal structure for **D30** has been deposited at the Cambridge Crystallographic Data Center and allocated the reference no. CCDC 909191.

4. ¹H NMR and ¹³C NMR

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

D12

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

D34

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

D35

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

