Pot, Atom and Step Economy Synthesis: A Diversity-
 Oriented Approach to Construct 2-substituted Pyrrolo[2,1$f][1,2,4]$ triazin-4(3H)-ones

Haoyue Xiang, Yanhong Chen, Qian He, Yuyuan Xie and Chunhao Yang*
${ }^{a}$ State Key Laboratory of Drug Research, Shanghai Insitute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203,China. Fax: 86-21-50806770; Tel: 86-21-50806770; E-mail: chyang@ mail.shenc.ac.cn.
Supporting Information
List of contents
Experiment procedures s2-s13
Notes and references s14
X-ray crystallography of compound D17, D23, D30 s15-s17
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR s18-s60

1. Experimental procedures

General information

Unless otherwise noted, all solvents and other reagents are commercially available and used without further purification. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian Mercury-300/400 and Varian Mercury-400/500 spectrometers. MS and HRMS spectra were performed on a Finnigan MAT 95 spectrometer. Melting points were measured by Büchi 510 melting point apparatus without further corrected.

Preparation of the starting material substituted 3-formyl-4-chromenones ${ }^{1}$

Dimethylformamide (6.0 mL) was cooled in ice-cold water and 2-hydroxy acetophenone (0.01 mmol) was added to this with vigorous stirring; phosphorus oxychloride (2.0 mL) was slowly added into the solution. The pink colour thick mass was kept overnight at room temperature. The mixture was then decomposed by cold water and extracted by EtOAc ($3 \times 100 \mathrm{~mL}$). Concentrated under reduced pressure, the crude product was further purified by column chromatography (PE: EtOAc 10:1).

6-Methyl-4-oxo-4H-chromene-3-carbaldehyde (B2)

Yellow solid (64%). Mp 164-166 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=10.38(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H})$, $7.55(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.42(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 2.48(\mathrm{~s}, 3 \mathrm{H})$. IR (KBr) 3082, 2856, 1695, 1655, 1616, 1485, 949 , 891, 825, 773, $545486 \mathrm{~cm}^{-1}$.

6-Chloro-4-oxo-4H-chromene-3-carbaldehyde (B3)

Yellow solid (89%). Mp 94-96 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=10.36(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, 1 \mathrm{H}, J=$ $2.6 \mathrm{~Hz}), 7.70(\mathrm{dd}, 1 \mathrm{H}, J=8.9,2.6 \mathrm{~Hz}), 7.51(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz})$. IR (KBr) 3074, 2977, 2881, 1651, 1623, 1604, $1568,1463,1443,1388,1338,1307,1089,1049,997,923,842,636,543 \mathrm{~cm}^{-1}$.

Preparation of the starting material compound A

Methyl 1-amino-5-bromo-1H-pyrrole-2-carboxylate
Preparation according to the literature ($\mathrm{WO} 2007 / 150001 \mathrm{~A} 1,2007$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ was used here to instead of NaOH . Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.82(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.40,120.73,115.54,111.26,108.62,51.36$.

1-Amino-5-bromo-1H-pyrrole-2-carboxamide (A2)

Ammonolysis from methyl 1-amino-5-bromo-1 H -pyrrole-2-carboxylate using NH_{3} in MeOH at $100{ }^{\circ} \mathrm{C}$. Yellow solid. Mp 152-153 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 8.06$ (br s, 1 H), $7.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.57 (br s, 2H), $6.13(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) $\delta 162.51,124.90,111.69,108.34$, 107.59. m/z (EI): $205\left[\mathrm{M}^{+}, \mathrm{Br}^{81}, 46 \%\right], 447\left[\mathrm{M}^{+}, \mathrm{Br}^{79}, 49 \%\right], 188\left(\mathrm{Br}^{81}, 100 \%\right), 186\left(\mathrm{Br}^{79}, 98 \%\right), 79$ (38\%). calcd for $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{BrN}_{3} \mathrm{O}, 202.9694$;found; $202.9678\left[\mathrm{M}^{+}, \mathrm{Br}^{79}\right]$.

Ethyl 1-amino-5-methyl-1H-pyrrole-2-carboxylate
Preparation according to the literature. ${ }^{2}$ Yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.77(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.80$ (dd, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

1-Amino-5-methyl-1H-pyrrole-2-carboxamide (A3)
Ammonolysis according to the literature from ethyl 1-amino-5-methyl-1H-pyrrole-2-carboxylate. ${ }^{3}$ Yellow solid. Mp 170-171 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d) $\delta 7.93$ (br s, 1 H), 6.97 (br s, 1 H), $6.58(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.38$ (br s, 2H), $5.72(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d6) $\delta 163.61,133.14,122.45$, 110.43, 103.77, 11.66. $\mathrm{m} / \mathrm{z}(\mathrm{EI}): 139$ [$\left.\mathrm{M}^{+}, 92 \%\right]$, 122 (100\%), 94 (28%).calcd for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}, 139.0746$;found, $139.0746\left[\mathrm{M}^{+}\right]$.

Typical procedure for synthesis of compound D1-40

A mixture of $\mathbf{A}(0.4 \mathrm{mmol}), \mathbf{B}(0.4 \mathrm{mmol})$, and $\mathrm{CuCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{mmol})$ in DMSO $(5 \mathrm{~mL})$ was kept in the pre-heated $120{ }^{\circ} \mathrm{C}$ oil bath for 2 h under air atmosphere. After the starting materials converted to the intermediate \mathbf{C} completely, NaOAc (4 equiv.) and amidines or hydrazines (0.4 mmol) were added, and then kept the reaction for another 1 h . After the reaction was complete, the reaction was cooled to room temperature, and then diluted by water (40 mL). The mixtures was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$), washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed under vacuum. The residue was applied on a silica-gel column (using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=80 / 1$) to afford yellow solid.

Characterization of the compounds

2-(4-Oxo-4H-chromen-3-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (C1)
White solid. Mp 282-284 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, ~ D M S O-d 6$) $\delta 11.79(\mathrm{~s}, 1 \mathrm{H}), 8.93(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.90(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 0 \mathrm{H}), 7.59(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.59(\mathrm{dd}, J=4.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6) $\delta 175.07,158.58,156.06,154.39,142.78$, 135.64, 126.99, 125.81, 123.84, 122.00, 119.22, 119.06, 116.79, 111.04, 108.08. m/z (EI):279 [M $\left.{ }^{+}, 100 \%\right], 108$ (60\%), 80 (10%).calcd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}, 279.0644$;found, 279.0641 [M^{+}].

2-(4-(2-Hydroxyphenyl)-2-phenylpyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one(D1)
Yellow solid (71%). Mp 212-214 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d 6) $\delta 11.90(\mathrm{br} 1 \mathrm{H}$), $10.06(\mathrm{br}, 1 \mathrm{H}), 9.09(\mathrm{~s}, 1 \mathrm{H})$, $8.50-8.47(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{ddd}, J=8.2,7.3$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.56-6.43(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d 6) $\delta 164.05,163.09,158.62,155.40,155.30,146.14,136.99,132.29,132.00$, 131.95, 129.37, 128.57, 124.53, 123.76, 121.74, 119.77, 118.99, 115.83, 110.80, 107.68. m/z (EI):381 [M ${ }^{+}$, 100%], $364(62 \%), 109(26 \%)$.calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2}, 381.1226$;found, 381.1225 [M^{+}].

2-(4-(2-Hydroxyphenyl)-2-(p-tolyl)pyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D2)
Yellow solid (71\%). Mp 258-260 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d δ) $\delta 11.91$ ($\mathrm{s}, 1 \mathrm{H}$), $10.03(\mathrm{~s}, 1 \mathrm{H}), 9.06(\mathrm{~s}, 1 \mathrm{H})$, $8.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=4.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=4.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d6) $\delta 163.60,162.52,158.05,154.91,154.80,145.69,141.45,133.86,131.77$, $131.45,129.50,128.09,124.07,122.97,121.25,119.26,118.51,115.34,110.29,107.17,21.09 . m / z(E I): 395[\mathrm{M}$ ${ }^{+}, 100 \%$], $378(71 \%), 109(26 \%)$.calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}$, 395.1382 ;found, 395.1381 [$\left.\mathrm{M}^{+}\right]$.

2-(2-(4-Chlorophenyl)-4-(2-hydroxyphenyl)pyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D3) Yellow solid (69\%). Mp 268-270 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d 6) $\delta 11.93$ (s, 1 H), $10.00(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~s}, 1 \mathrm{H})$, $8.49(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=4.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=4.3,2.7 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6) $\delta 163.19,163.07,158.70,155.37,155.28,146.04,136.87,135.85,132.31$, $132.06,130.33,129.49,124.45,123.96,121.75,119.77,119.00,115.81,110.81,107.68 . \mathrm{m} / \mathrm{z}(\mathrm{EI}): 417 \mathrm{MM}^{+}, \mathrm{Cl}^{37}$ 32%], $415\left[\mathrm{M}^{+}, \mathrm{Cl}^{35} 100 \%\right]$, 398 (62%), 400 (18%), 109 (46%). calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{ClN}_{5} \mathrm{O}_{2}, 415.0836$;found, 415.0839 [$^{+}{ }^{+}$.

2-(2-(4-Bromophenyl)-4-(2-hydroxyphenyl)pyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D4)
Yellow solid (69%). Mp 279-281 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6) $\delta 11.95(\mathrm{~s}, 1 \mathrm{H}$), $10.02(\mathrm{~s}, 1 \mathrm{H}), 9.11(\mathrm{~s}, 1 \mathrm{H})$, $8.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.57-6.42(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6) $\delta 163.20,158.70,155.36,155.28,146.04,136.20,132.43,132.31,132.06,130.54,125.89$, 124.44, 124.00, 121.75, 119.77, 119.00, 115.81, 110.81, 107.69. $\mathrm{m} / \mathrm{Z}(\mathrm{EI}): 461\left[\mathrm{M}^{+}, \mathrm{Br}^{81} 96 \%\right], 459\left[\mathrm{M}^{+}, \mathrm{Br}^{79}\right.$ 100%], $444(51 \%), 442(53 \%), 109(61 \%)$. calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{BrN}_{5} \mathrm{O}_{2}, 459.0331$;found, 459.0331 [M^{+}].

2-(2-(4-Aminophenyl)-4-(2-hydroxyphenyl)pyrimidin-5-yl)pyrrolo[2,1-ff[1,2,4]triazin-4(3H)-one (D5)
Yellow solid (76%). Mp 265-266 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 11.83$ (br s, 1H), 10.11 (br s, 1H), 8.90 (s, $1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{br} \mathrm{s}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6) δ
$164.55,162.58,158.20,155.53,155.28,152.76,146.45,132.02,131.69,130.27,124.60,123.82,121.63,121.47$, 119.60, 118.93, 115.87, 113.82, 110.67, 107.53. m / z (EI):396 [M ${ }^{+}, 100 \%$], 379 (82%), 109 (36\%). calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{2}, 396.1335$;found, $396.1334\left[\mathrm{M}^{+}\right]$.

2-(4-(2-Hydroxyphenyl)-2-(o-tolyl)pyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D6)
Yellow solid (76%). Mp 270-272 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-dO) $\delta 11.96$ (br s, 1H), 10.07 (br s, 1H), 9.12 (s, $1 \mathrm{H}), 7.96(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{ddd}, J=8.3,7.3,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.97(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=4.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=$ $4.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO-d 6) $\delta 167.05(\mathrm{~s}), 162.58(\mathrm{~s}), 158.13(\mathrm{~s}), 155.38(\mathrm{~s})$, 155.28 (s), 146.16 (s), 137.65 (s$), 137.57$ (s), 132.16 (s$), 131.94$ (s), 131.85 (s$), 131.06$ (s$), 130.38$ (s), 126.47 (s), 124.42 (s), 122.99 (s), 121.71 (s), 119.73 (s), 118.99 (s), 115.86 (s), 110.81 (s), 107.68 (s), 21.74 (s). m/z (EI): 395 [100\%], $302(12 \%), 286(14 \%)$. calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}, 395.1382$;found, 395.1387 [M^{+}].

2-(4-(2-Hydroxyphenyl)-2-(3-methoxyphenyl)pyrimidin-5-yl)pyrrolo[2,1-ff[1,2,4]triazin-4(3H)-one (D7)
Yellow solid (81%). Mp 210-212 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}^{\mathrm{H}}$ NMR (300 MHz , DMSO-d6) $\delta 11.94(\mathrm{~s}, 1 \mathrm{H}$), $10.03(\mathrm{~s}, 1 \mathrm{H}), 9.08(\mathrm{~s}, 1 \mathrm{H})$, $8.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.50(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6) $\delta 163.78,163.03,160.13,158.57,155.40$, $155.27,146.10,138.44,132.26,131.99,130.51,124.49,123.84,121.74,120.99,119.79,118.99,117.75,115.82$, 113.41, 110.79, 107.66, 55.72. $\mathrm{m} / \mathrm{z}(\mathrm{EI}): 411\left[\mathrm{M}^{+}, 100 \%\right], 394(62 \%), 109(28 \%)$.calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{3}$, 411.1331;found, 411.1337.

2-(4-(2-Hydroxyphenyl)pyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D8)

Yellow solid (71%). Mp 276-278 ${ }^{\circ} \mathrm{C} .{ }^{\mathrm{H}} \mathrm{H}$ NMR (300 MHz , DMSO-d $) ~ \delta 11.93$ (br s, 1H), 10.05 (br s, 1H), 9.34 (s, $1 \mathrm{H}), 9.00(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J$ $=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz}$, DMSO-d6) $\delta 162.61$, $159.37,157.96,155.35,155.23,145.94,132.07,132.01,125.73,124.03,121.75,119.66,118.98,115.86,110.81$, 107.68. $\mathrm{m} / \mathrm{z}(\mathrm{EI}): 305\left[\mathrm{M}^{+}, 100 \%\right], 287(84 \%), 109(62 \%), 108(40 \%) . c a l c d$ for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{2}, 305.0913$;found, $305.0914\left[\mathrm{M}^{+}\right]$.

2-(4-(2-Hydroxyphenyl)-2-methylpyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D9)
Yellow solid (67\%). Mp 236-238 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6) $\delta 11.84(\mathrm{~s}, 1 \mathrm{H}$), $10.04(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~s}, 1 \mathrm{H})$, $7.54(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{td}, J=7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.49-6.47(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6) $\delta 168.53,162.64,158.06,155.41$, $155.26,146.18,132.02,131.83,124.07$, 122.87, 121.70, 119.55, 118.93, 115.87, 110.74, 107.61, 26.23. m/z (EI):417 [$\left.\mathrm{M}^{+}, \mathrm{Cl}^{37} 32 \%\right], 319(100 \%), 302(62 \%), 109(42 \%)$.calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{2}, 319.1069$;found, 319.1071 [M^{+}].

2-(4-(2-Hydroxyphenyl)-2-isopropylpyrimidin-5-yl)pyrrolo[2,1-ff[1,2,4]triazin-4(3H)-one (D10)
Yellow solid (78\%). Mp 190-192 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6) $\delta 11.85(\mathrm{~s}, 1 \mathrm{H}), 10.12(\mathrm{~s}, 1 \mathrm{H}), 8.92(\mathrm{~s}, 1 \mathrm{H})$, $7.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.84(\mathrm{~m}$, $1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.52-6.44(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.19(\mathrm{~m}, J=14.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13}$ C NMR (126 MHz , DMSO-d6) $\delta 175.37,162.53,158.20,155.52,155.23,146.22,132.05,131.87,124.17$, 123.01, 121.69, 119.64, 118.97, 115.91, 110.74, 107.62, 37.44, 22.03. m/z (EI):347 [$\left.\mathrm{M}^{+}, 100 \%\right], 330$ (65%), 109 (34\%). calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}$, 347.1382 ;found, 347.1380 [M^{+}].

2-(2-(tert-Butyl)-4-(2-hydroxyphenyl)pyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D11)
Yellow solid (75%). Mp 136-138 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6) $\delta 11.84$ (br s, 1H), 10.22 (br s, 1H), 8.95 (s, $1 \mathrm{H}), 7.59(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=2.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.89(\mathrm{dd}, J=4.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=4.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(126$ MHz , DMSO-d σ) $\delta 177.16,162.06,158.00,155.64,155.25,146.30,132.03,131.90,124.22,122.56,121.68$, 119.70, 118.98, 115.98, 110.73, 107.62, 29.85. m / z (EI):361 [M $\left.{ }^{+}, 100 \%\right], 344$ (54\%), 109 (18%).calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2}, 361.1539$;found, 361.1532 [$\left.\mathrm{M}^{+}\right]$.

2-(4-(2-Hydroxyphenyl)-2-methoxypyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D12)
Yellow solid (75%). Mp 216-218 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d) $\delta 11.80(\mathrm{~s}, 1 \mathrm{H}$), $9.97(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~s}, 1 \mathrm{H})$, $7.61-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.35 \mathrm{dd}, J=7.5,1.5 \mathrm{~Hz} 1 \mathrm{H}), 7.23(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}$, $J=4.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{dd}, J=4.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz}$, DMSO-d6) $\delta 165.55,165.52,160.81,155.33,146.04,132.02,131.98,124.14,121.60,120.10,119.58,118.89$, 115.84, 110.66, 107.52, 55.49. $\mathrm{m} / \mathrm{Z}(\mathrm{EI}): 335\left[\mathrm{M}^{+}, 100 \%\right], 318(57 \%), 109(60 \%)$. calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{3}$, 335.1018;found, $335.1018\left[\mathrm{M}^{+}\right]$.

2-(2-Cyclopropyl-4-(2-hydroxyphenyl)pyrimidin-5-yl)pyrrolo[2,1-ff[1,2,4]triazin-4(3H)-one (D13)

Yellow solid (78\%). Mp 212-214 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d 6) $\delta 11.78(\mathrm{~s}, 1 \mathrm{H}), 10.01(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~s}, 1 \mathrm{H})$, $7.53(\mathrm{dd}, J=7.5,1.2,1 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=$ $3.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{dd}, J=4.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.6(\mathrm{~m}, 1 \mathrm{H}), 1.17-1.12(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6) $\delta 172.30,162.50,157.93$, 155.39, 155.26, 146.23, 131.99, 131.77, 124.26, 122.60 , $121.67,119.58,118.91,115.82,110.72,107.58,18.59,11.51 . \mathrm{m} / \mathrm{z}(\mathrm{EI}): 417\left[\mathrm{M}^{+}, \mathrm{Cl}^{37} 32 \%\right], 345\left[\mathrm{M}^{+}, 100 \%\right]$, $328(64 \%), 109(42 \%)$. calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2}, 345.1226$;found, 345.1223 [M^{+}].

2-(4-(2-Hydroxyphenyl)-2-(phenoxymethyl)pyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D14) Yellow solid (78%). Mp 206-208 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d 6) $\delta 11.92$ (br s, 1H), 10.15 (br s, 1 H), 9.02 (s, $1 \mathrm{H}), 7.52(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=2.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.08-6.82(\mathrm{~m}, 5 \mathrm{H}), 6.72$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=4.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6) $\delta 166.53$, $162.99,158.62,158.59,155.54,155.23,145.90,132.17,132.08,130.00,124.18,123.73,121.75,121.39,119.65$, 118.97, 115.96, 115.18, 110.82, 107.71, 70.40.m/z (EI):411 [M $\left.{ }^{+}, 100 \%\right], 394$ [46\%], 318 (60%), 183 (20\%).calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{3}, 411.1331$;found, $411.1343\left[\mathrm{M}^{+}\right]$.

2-(2-((2-Chlorophenoxy)methyl)-4-(2-hydroxyphenyl)pyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D15)
Yellow solid (77\%). Mp 95-96 ${ }^{\circ}$ C. ${ }^{1}$ H NMR (400 MHz , DMSO-d6) $\delta 11.97$ (s, 1H), 10.14 (s, 1H), $9.03(\mathrm{~s}, 1 \mathrm{H})$, $7.52(\mathrm{dd}, \mathrm{J}=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, \mathrm{J}=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, \mathrm{J}=2.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 2 \mathrm{H})$, $7.18(\mathrm{dd}, \mathrm{J}=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{td}, \mathrm{J}=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{dd}, \mathrm{J}=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.51(\mathrm{dd}, \mathrm{J}=4.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- $d 6$) $\delta 165.64,162.62$, 158.33, 155.19 , $154.90,153.71,145.58,131.86,131.78,130.23,128.32,123.91,123.39,121.96,121.50,121.39,119.30,118.65$, $115.61,114.28,110.46,107.35,70.61 \mathrm{~m} / z(\mathrm{EI}): 412$ [$\mathrm{M}+\mathrm{Cl} 3732 \%], 410\left[\mathrm{M}^{+}, \mathrm{Cl}^{35} 100 \%\right], 392$ (12%), 183 (16\%). calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{ClN}_{5} \mathrm{O}_{3}, 445.0942$;found, $445.0948[\mathrm{M}+]$.

2-(2-Amino-4-(2-hydroxyphenyl)pyrimidin-5-yl)pyrrolo[2,1-ff[1,2,4]triazin-4(3H)-one (D16)
Yellow solid (76%). Mp > $300{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6) $\delta 11.56(\mathrm{~s}, 1 \mathrm{H}$), $10.68(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H})$, $7.42(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 2 \mathrm{H}), 7.21(\mathrm{td}, J=8.5,8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J$ $=4.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.51-6.42(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6) $\delta 163.89$, $163.34,160.12,156.53,155.26,146.91,131.69,130.97,122.98,121.56,119.14,118.79,116.61,113.87,110.54$, 107.40. m / z (EI): $320\left[\mathrm{M}^{+}, 100 \%\right], 302(90 \%), 109(84 \%), 108(19 \%)$. calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{2}, 320.1022$;found, $320.1022\left[\mathrm{M}^{+}\right]$.

Ethyl 2-amino-6-(2-hydroxyphenyl)-5-(4-oxo-3,4-dihydropyrrolo[2,1-f][1,2,4]triazin-2-yl)nicotinate (D17)
Yellow solid (84%). Mp 280-282 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-dO) $\delta 11.60(\mathrm{~s}, 1 \mathrm{H}), 10.66(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H})$, $7.72(\mathrm{~s}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=2.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{ddd}, J=8.0,7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.85(\mathrm{dd}, J=4.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{dd}, J=4.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6) $\delta 166.28,159.84,158.97,156.34,155.24,147.75,142.75$, $131.30,131.12,123.97,121.59,119.07,118.80,116.61,115.69,110.57,107.42,103.11,61.31,14.68 . m / z$ (EI): $391[100 \%], 373(67 \%)$, $109(67 \%)$. calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{4}, 391.1281$;found, $391.1280\left[\mathrm{M}^{+}\right]$.

2-(5-(2-Hydroxyphenyl)-1-phenyl-1H-pyrazol-4-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D18)
Yellow solid (77%). Mp > $300{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d 6) $\delta 11.55$ (s, 1 H), 9.83 (s, 1H), 8.29 (s, 1H), 7.48 $-7.04(\mathrm{~m}, 8 \mathrm{H}), 6.96-6.67(\mathrm{~m}, 3 \mathrm{H}), 6.47(\mathrm{dd}, J=4.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d 6) $\delta 155.71$, $155.12,142.32,140.20,140.03,139.92,132.56,131.26,129.27,128.17,124.83,121.46,119.22,118.65,116.40$, $115.99,113.97,110.64,107.64 \mathrm{~m} / \mathrm{z}$ (EI): 369 [$\mathrm{M}^{+}, 100 \%$], 351 (22%), 109 (62%). calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2}$, 369.1226; found, $369.1221\left[\mathrm{M}^{+}\right]$.

2-(5-(2-Hydroxyphenyl)-1-(p-tolyl)-1H-pyrazol-4-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D19)
Yellow solid (72%). Mp > $300{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6) $\delta 11.49$ (br s, 1 H), $9.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H})$, $7.28-7.01(\mathrm{~m}, 7 \mathrm{H}), 6.92-6.66(\mathrm{~m}, 3 \mathrm{H}), 6.45(\mathrm{dd}, J=4.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz}$, DMSO-d6) $\delta 155.70,155.12,142.36,139.98,139.82,137.65,132.56,131.19,129.70,124.70,121.44,119.21$, 118.64, 116.50, 115.98, 113.80, 110.62, 107.62, 20.98. m/z (EI): 383 [${ }^{+}, 100 \%$], 365 (20\%), 109 (60%). calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}, 383.1382$; found; $383.1385\left[\mathrm{M}^{+}\right]$

2-(5-(2-Hydroxyphenyl)-1-(4-methoxyphenyl)-1H-pyrazol-4-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D20)
Yellow solid (65%). Mp 268-270 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d σ) $\delta 11.46$ (br s, 1 H), 9.79 (br s, 1 H), 8.23 (br s, $1 \mathrm{H}), 7.33-6.98(\mathrm{~m}, 5 \mathrm{H}), 6.97-6.66(\mathrm{~m}, 5 \mathrm{H}), 6.44(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (126 MHz , DMSOd6) $\delta 158.92,155.72,155.14,142.41,138,88,139.76,133.09,132.57,131.15,126.38,121.43,119.19,118.63$, $116.50,115.98,114.33,113.56,110.61,107.61,55.79 . \mathrm{m} / \mathrm{z}(\mathrm{EI}): 399$ [$\left.\mathrm{M}^{+}, 100 \%\right], 381$ (18\%), 109 (49\%). calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{3}, 399.1331$;found, 399.1347 [$\left.\mathrm{M}^{+}\right]$.

2-(1-(4-Fluorophenyl)-5-(2-hydroxyphenyl)-1H-pyrazol-4-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D21) Yellow solid (75\%). Mp 292-293 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}^{\mathrm{H}}$ NMR (300 MHz , DMSO-d6) $\delta 11.52(\mathrm{~s}, 1 \mathrm{H}), 9.84(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H})$, $7.34-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.09(\mathrm{~m}, 5 \mathrm{H}), 6.84(\mathrm{dd}, J=4.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{dd}, J=4.3,2.6$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- $d 6$) $\delta 161.47((\mathrm{~d}, J=245.57 \mathrm{~Hz}), 155.66,155.14,142.26,140.24,140.10$, $136.46(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 132.59,131.36,127.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 121.46,119.26,118.64,116.16((\mathrm{~d}, J=23.44 \mathrm{~Hz})$, $116.15,116.06,113.91(\mathrm{~s}), 110.65,107.64 . \mathrm{m} / \mathrm{z}(\mathrm{EI}): 387\left[\mathrm{M}^{+}, 100 \%\right], 369(22 \%), 109$ (66%). calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{FN}_{5} \mathrm{O}_{2}, 387.1132$;found; $387.1135\left[\mathrm{M}^{+}\right]$.

2-(1-(4-Chlorophenyl)-5-(2-hydroxyphenyl)-1H-pyrazol-4-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D22) Yellow solid (64%). Mp > $300{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6) $\delta 11.59$ (br s, 1 H), $9.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H})$, $7.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.85-6.79(\mathrm{~m}, 3 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO-d6) δ $155.60,155.12,142.16,140.57,140.04,138.93,132.59,132.58,131.47,129.33,126.35,121.49,119.34,118.65$, $116.10,116.04,114.17,110.67,107.66 . \mathrm{m} / \mathrm{z}(\mathrm{EI}): 405\left[\mathrm{M}^{+}, \mathrm{Cl}^{37}, 37 \%\right], 403\left[\mathrm{M}^{+}, \mathrm{Cl}^{35}, 100 \%\right], 385(29 \%), 109$ (96%). calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{ClN}_{5} \mathrm{O}_{2}, 403.0836$;found; $403.0836\left[\mathrm{M}^{+}\right]$.

2-(1-(4-Bromophenyl)-5-(2-hydroxyphenyl)-1H-pyrazol-4-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D23)
Yellow solid (68%). Mp > $300{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d) $\delta 11.59$ (br s, 1 H), $9.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H})$, $7.55(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.04(\mathrm{~m}, 5 \mathrm{H}), 6.82(\mathrm{dt}, J=8.2,4.5 \mathrm{~Hz}, 3 \mathrm{H}), 6.45(\mathrm{dd}, J=4.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6) $\delta 155.58,155.11,142.14,140.61,140.00,139.35,132.59,132.26,131.48,126.61$, $121.49,121.03,119.35,118.65,116.11,116.03,114.20,110.67,107.67 . \mathrm{m} / \mathrm{z}(\mathrm{EI}): 449\left[\mathrm{M}^{+}, \mathrm{Br}^{81}, 86 \%\right], 447\left[\mathrm{M}^{+}\right.$, $\mathrm{Br}^{79}, 80 \%$], $431\left(\mathrm{Br}^{81}, 18 \%\right), 433\left(\mathrm{Br}^{79}, 18 \%\right), 109(74 \%)$. calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{BrN}_{5} \mathrm{O}_{2}, 447.0331$;found; 447.0338 [M $\left.{ }^{+}, \mathrm{Br}^{79}\right]$.

2-(5-(2-Hydroxyphenyl)-1-(4-(trifluoromethyl)phenyl)-1H-pyrazol-4-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)one (D24)
Yellow solid (73\%). Mp > $300{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d σ) $\delta 11.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), $9.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H})$, $7.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.91-6.73(\mathrm{~m}, 3 \mathrm{H}), 6.51-6.41(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6) $\delta 155.55,155.11,143.29,142.02,141.12,140.21,132.58,131.66,128.13$ (q, $J=$ $\left.32.4 \mathrm{~Hz}, \mathrm{CF}_{3} C\right), 126.60\left(\mathrm{q}, J=3.5 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CCH}\right), 124.33\left(\mathrm{q}, J=272.7 \mathrm{~Hz}, C F_{3}\right), 124.90,121.52,119.43,118.66$, $116.15,115.86,114.62,110.70,107.69 . m / Z(E I): 437\left[\mathrm{M}^{+}, 100 \%\right], 419(30 \%), 109$ (86%).calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{2}, 437.1100$;found; 437.1103 [$\left.\mathrm{M}^{+}\right]$.

4-(5-(2-Hydroxyphenyl)-4-(4-oxo-3,4-dihydropyrrolo[2,1-f][1,2,4]triazin-2-yl)-1H-pyrazol-1-yl)benzonitrile (D25)
Yellow solid (51%). Mp > $300{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6) $\delta 11.64$ (br s, 1 H), $9.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H})$, $7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.97-6.70(\mathrm{~m}, 3 \mathrm{H}), 6.46(\mathrm{t}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- $d 6$) δ 155.51, 155.10, 143.59, 141.91, 141.39, 140.26, 133.66, 132.57, 131.76, $124.81,121.54,119.48,118.66,118.63,116.21,115.77,114.84,110.73,110.46,107.72 . \mathrm{m} / \mathrm{z}(\mathrm{EI}): 394\left[\mathrm{M}^{+}\right.$, 100%], $376(27 \%), 109(70 \%)$. calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{2}, 394.1178$;found, 394.1177 [$\left.\mathrm{M}^{+}\right]$.

2-(1-(5-Bromopyridin-2-yl)-5-(2-hydroxyphenyl)-1H-pyrazol-4-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D26)
Yellow solid (52\%). Mp 276-278 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d 6$) $\delta 11.64$ (br s, 1H), 9.62 (br s, 1 H), 8.35 (d, J $=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-$ $7.08(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{dd}, J=4.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{dd}, J=4.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO-d6) $\delta 155.14,155.08,151.57,148.91,142.14,141.88,141.28,140.30,132.12,130.96,121.58$, $120.58,119.27,119.05,118.70,116.53,115.81,114.69,110.71,107.67 . m / z(E I): 450\left[\mathrm{M}^{+}, \mathrm{Br}^{81}, 98 \%\right], 448\left[\mathrm{M}^{+}\right.$, $\mathrm{Br}^{79}, 100 \%$], $433\left(\mathrm{Br}^{81}, 50 \%\right), 431\left(\mathrm{Br}^{79}, 52 \%\right), 275(72 \%), 109(74 \%)$. calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{BrN}_{6} \mathrm{O}_{2}, 448.0283$;found; $448.0282\left[\mathrm{M}^{+}, \mathrm{Br}^{79}\right]$.

2-(1-(2-Chlorophenyl)-5-(2-hydroxyphenyl)-1H-pyrazol-4-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D27) Yellow solid (66%). Mp > $300{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d σ) $\delta 11.58$ (br s, 1H), $9.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H})$, $7.53(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{dd}, J=2.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{ddd}, J=8.6,7.3,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.01(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{td}, J=7.4$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=4.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-d \sigma$) $\delta 155.61,155.19,142.56,141.59$, $140.38,137.33,131.88,131.48,131.38,131.15,130.53,130.39,128.14,121.44,118.85,118.70,115.90,115.61$, $113.23,110.59,107.59 . m / z(E I): 405\left[\mathrm{M}^{+}, \mathrm{Cl}^{37}, 92 \%\right], 403\left[\mathrm{M}^{+}, \mathrm{Cl}^{35}, 33 \%\right], 385(33 \%), 109(100 \%)$. calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{ClN}_{5} \mathrm{O}_{2}, 403.0836$;found; $403.0844\left[\mathrm{M}^{+}, \mathrm{Cl}^{35}\right]$.

2-(5-(2-Hydroxyphenyl)-1H-pyrazol-4-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D28)
Yellow solid (48\%). Mp 282-283 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, ~ D M S O-d \sigma$) $\delta 13.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 11.54(\mathrm{~s}, 1 \mathrm{H}), 9.87(\mathrm{~s}$, $1 \mathrm{H}), 8.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.63-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 6.48(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-d 6\right) ~ \delta 155.33,155.10,147.71,143.80,139.89,139.44,131.49,131.12,130.70$,
121.40, 119.33, 118.79, 116.40, 116.20, 111.62, 110.43, 107.35. m / z (EI): 293 [$\left.\mathrm{M}^{+}, 100 \%\right], 275$ (32\%), 109 (60\%), 108 (11\%). calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{2}, 293.0913$;found, 293.0914 [M ${ }^{+}$].

2-(5-(2-Hydroxyphenyl)-1-methyl-1H-pyrazol-4-yl)pyrrolo[2,1-ff[1,2,4]triazin-4(3H)-one (D29)
Yellow solid (49%). Mp 291-292 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6) $\delta 11.43$ (br s, 1 H), 9.92 (br s, 1 H), 8.02 (s, $1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.04-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6) $\delta 155.60,155.20,142.63,140.13,138.42$, 132.57, 131.26, 121.32, 119.30, 118.61, 116.22, 116.13, 112.06, 110.50, 107.49, 37.59. $\mathrm{m} / \mathrm{z}(\mathrm{EI}): 307$ [$\left.\mathrm{M}^{+}, 100 \%\right], 289$ (12\%), 109 (53\%). calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{2}$, 307.1069;found; 307.1069 [M^{+}].

2-(5-(2-Hydroxyphenyl)-1-isopropyl-1H-pyrazol-4-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D30)
Yellow solid (48%). Mp $292{ }^{\circ} \mathrm{C}$ decomposed. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) $\delta 11.36$ (s, 1H), 9.88 (s, 1H), 8.11 $(\mathrm{s}, 1 \mathrm{H}), 7.30(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=4.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{dd}, J=4.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dt}, J=13.1,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6) $\delta 155.74,155.14$, $142.61,139.03,138.65,132.47,131.21,121.27,119.44,118.60,116.39,116.16,111.50,110.48,107.50,50.65$, 23.23, 22.52. m / Z (EI): $335\left[\mathrm{M}^{+}, 100 \%\right.$], $320(36 \%)$, $109(66 \%)$. calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}, 335.1382$;found; 335.1385 [M^{+}].

2-(1-(tert-Butyl)-5-(2-hydroxyphenyl)-1H-pyrazol-4-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D31)
Yellow solid (65%). Mp 248-250 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}^{\mathrm{H}}$ NMR (400 MHz , DMSO-d6) $\delta 11.51$ (s, 1H), $9.76(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H})$, $7.45-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{td}, J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.80(\mathrm{~m}, 3 \mathrm{H}), 6.49(\mathrm{dd}, J=4.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6) $\delta 155.26,155.24,146.88,143.64,130.57,129.84,129.71,121.40,120.00$, $119.27,118.82,116.09,111.53,110.45,107.38,59.42,29.72 . m / z(E I): 349\left[\mathrm{M}^{+}, 100 \%\right], 331$ (5\%), 293 (46\%), 275 (63\%), 109 (90%). calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2}, 349.1539$;found, 349.1542 [${ }^{+}$].

2-(1-(2-Hydroxyethyl)-5-(2-hydroxyphenyl)-1H-pyrazol-4-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D32)
Yellow solid (63%). Mp 210-212 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6) $\delta 11.39$ (br s, 1 H), 9.86 (br s, 1 H), 8.07 (s, $1 \mathrm{H}), 7.29(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{dd}, J=3.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=$ $4.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-dG) δ $155.58,155.18,142.62,140.37,138.75,132.81,131.18,121.30,119.32,118.60,116.21,116.14,111.97,110.49$, $107.49,60.05,51.87 . \mathrm{m} / \mathrm{z}(\mathrm{EI}): 337\left[\mathrm{M}^{+}, 100 \%\right], 319(14 \%), 294(22 \%), 109$ (64%). calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{3}$, 337.1175;found; $337.1181\left[\mathrm{M}^{+}\right.$].

2-(1-Benzyl-5-(2-hydroxyphenyl)-1H-pyrazol-4-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D33)
Yellow solid (70%). Mp 258-259 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6) $\delta 9.96$ (br s, 1 H), 8.10 (s, 1H), $7.37-7.09$ $(\mathrm{m}, 6 \mathrm{H}), 7.04-6.91(\mathrm{~m}, 3 \mathrm{H}), 6.90-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.42(\mathrm{dd}, J=4.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6) $\delta 155.56,155.16,142.55,140.42,139.19,137.37,132.48,131.37,128.79,127.89,127.70$, $121.34,119.37,118.61,116.25,116.06,112.42,110.53,107.53,53.26 . \mathrm{m} / z(\mathrm{EI}): 383\left[\mathrm{M}^{+}, 100 \%\right], 279(17 \%)$, 109 (78\%), 91 (78\%). calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}, 307.1069$;found; 383.1382 [M^{+}].

2-(4-(5-Chloro-2-hydroxyphenyl)-2-cyclopropylpyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D34) Yellow solid (58\%). Mp 266-267 ${ }^{\circ} \mathrm{C}$. yellow solid ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6) $\delta 11.85(\mathrm{~s}, 1 \mathrm{H}$), $10.25(\mathrm{~s}, 1 \mathrm{H})$, $8.85(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=2.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=8.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=$ $4.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=4.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.03(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6) $\delta 172.61,160.99,158.07,155.26,154.22,145.99,131.38,131.28,126.22$, 122.97, 122.72, 121.77, 118.89, 117.48, 110.78, 107.67, 18.64, 11.67. $\mathrm{m} / \mathrm{z}(\mathrm{EI}): 381\left[\mathrm{M}^{+}, \mathrm{Cl}^{37} 36 \%\right], 379\left[\mathrm{M}^{+}\right.$, $\mathrm{Cl}^{35} 100 \%$], 362 (68%), 344 (38%), 109 (70%). calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClN}_{5} \mathrm{O}_{2}$, 379.0836;found, $379.0835\left[\mathrm{M}^{+}\right]$.

2-(2-Cyclopropyl-4-(2-hydroxy-5-methylphenyl)pyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D35) Yellow solid (69%). Mp 235-236 ${ }^{\circ} \mathrm{C}$. yellow solid ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6) $\delta 11.78(\mathrm{~s}, 1 \mathrm{H}$), $9.75(\mathrm{~s}, 1 \mathrm{H})$, $8.80(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{br}, 1 \mathrm{H}), 7.37(\mathrm{br}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 2.34-2.30(\mathrm{~s}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6) δ $172.26,162.46,157.91,155.27,153.22,146.35,132.36,132.19,127.84,123.93,122.65,121.69,118.94,115.70$, 110.67, 107.53, 20.60, 18.62, 11.47. $m / Z(E I): 359\left[\mathrm{M}^{+}, 100 \%\right], 342(66 \%), 109(46 \%)$. calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}$, 359.1382;found, $359.1382\left[\mathrm{M}^{+}\right]$

7-Bromo-2-(2-cyclopropyl-4-(2-hydroxyphenyl)pyrimidin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D36) Yellow solid (82\%). Mp 278-279 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6) $\delta 12.08$ (br s, 1 H), 9.93 (br s, 1 H), 8.83 (s, $1 \mathrm{H}), 7.55(\mathrm{dd}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{td}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{td}, J=7.5,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.73-6.63(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{tt}, J=7.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.22-1.04(\mathrm{~m}, 4 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR (101 MHz , DMSO-d6) $\delta 174.00,164.26,159.21,156.56,156.13,148.27,125.87,123.81,121.65,121.01,117.10,114.62,109.84,104.65$, 20.07, 12.98. $\mathrm{m} / \mathrm{z}(\mathrm{EI}): 425\left[\mathrm{M}^{+}, \mathrm{Br}^{81}, 98 \%\right], 423\left[\mathrm{M}^{+}, \mathrm{Br}^{79}, 100 \%\right], 408\left(\mathrm{Br}^{81}, 72 \%\right), 406\left(\mathrm{Br}^{79}, 68 \%\right), 252(68 \%)$,
$189(56 \%)$. calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{BrN}_{5} \mathrm{O}_{2}, 423.0330$; found; $423.0331\left[\mathrm{M}^{+}, \mathrm{Br}^{79}\right]$.

2-(2-Cyclopropyl-4-(2-hydroxyphenyl)pyrimidin-5-yl)-7-methylpyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (D37) Yellow solid (84\%). Mp 244-245 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6) $\delta 11.85$ (s, 1H), $9.87(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~s}, 1 \mathrm{H})$, $7.49(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.21-1.06(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6) $\delta 172.32,163.10,157.46,155.29,154.96,144.97,131.52$, 131.16, 129.61, 125.18, 122.66 , $119.41,118.02,115.45,109.72,106.91,18.58,11.45,10.56 . \mathrm{m} / z(\mathrm{EI}): 359\left[\mathrm{M}^{+}, 100 \%\right], 342(72 \%), 123(38 \%)$. calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}, 359.1382$;found, $359.1380\left[\mathrm{M}^{+}\right]$.

2-(2-Cyclopropyl-4-(2-hydroxyphenyl)pyrimidin-5-yl)quinazolin-4(3H)-one (D38)
Yellow solid (82%). Mp 216-218 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}^{\mathrm{H}}$ NMR (300 MHz , DMSO-d6) $\delta 12.32$ (br s, 1 H), 9.87 (br s, 1 H), 8.82 (s, $1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=8.3,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.24(\mathrm{~m}$, $1 \mathrm{H}), 1.18-1.06(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6) $\delta 171.98$, 162.44, 162.26, 157.72, 155.51, 152.56, $149.35,134.76,132.00,131.67,127.73,126.95,126.19,125.22,124.42,121.45,119.46,115.71,18.59,11.44$. $m / z(\mathrm{EI}): 356\left[\mathrm{M}^{+}, 60 \%\right], 339(100 \%), 120(30 \%)$. calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}, 356.1273$;found, $356.1281\left[\mathrm{M}^{+}\right]$.

6-Chloro-2-(2-cyclopropyl-4-(2-hydroxyphenyl)pyrimidin-5-yl)quinazolin-4(3H)-one (D39)
Yellow solid (65%). Mp 228-230 ${ }^{\circ} \mathrm{C}$. yellow solid ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6) $\delta 12.56(\mathrm{~s}, 1 \mathrm{H}), 9.83(\mathrm{~s}, 1 \mathrm{H})$, $8.82(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz}$, DMSO-d6) $\delta 172.19,162.47,161.38,157.71,155.45,153.22,148.10,134.93,132.07,131.75,131.22,129.98$, $125.22,125.00,124.43,122.70,119.56,115.70,18.63,11.49 . \mathrm{m} / \mathrm{z}(\mathrm{EI}): 392\left[\mathrm{M}^{+}, \mathrm{Cl}^{37} 25 \%\right], 390\left[\mathrm{M}^{+}, \mathrm{Cl}^{35} 67 \%\right]$, $373(100 \%), 154(30 \%)$. calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{2}, 390.0884$; found, $390.0883\left[\mathrm{M}^{+}\right]$.

2-(2-Cyclopropyl-4-(2-hydroxyphenyl)pyrimidin-5-yl)-6-methylquinazolin-4(3H)-one (D40)

Yellow solid (72\%). Mp 272-273 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6) $\delta 12.25(\mathrm{~s}, 1 \mathrm{H}), 9.89(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H})$, $7.90(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.30-0.94(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d6) $\delta 171.88$, $162.48,162.20,157.73,155.59,151.67,147.40,136.71,136.0,131.96,131.65,127.64,125.58,125.28,124.43$, $121.23,119.45,115.75,21.28,18.58,11.42 . \mathrm{m} / z$ (EI): 370 [M $\left.{ }^{+}, 52 \%\right], 353$ (100%), 134 (26%). calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}, 370.1430$;found, $370.1430\left[\mathrm{M}^{+}\right]$.

2. Notes and References

1. R.G. Nandgaonkar and V.N. Ingle, Asian J. Chem., 2005, 17, 2016-2018.
2. J. Hynes, W. W. Doubleday, A. J. Dyckman, J. D. Godfrey, J. A. Grosso, S. Kiau and K. Leftheris, J Org Chem, 2004, 69, 1368-1371.
3. M. W. Bundesmann, S. B. Coffey and S. W. Wright, Tetrahedron Lett, 2010, 51, 3879-3882.

3. X-ray crystallography of compound D17, D23 and D30

Datablock H_Report_20120067_20120067.CIF - ellipsoid plot

D17
A specimen of $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{4}$ was used for the X -ray crystallographic analysis. The X -ray intensity data were measured.

The total exposure time was 5.58 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 11939 reflections to a maximum θ angle of 27.57° ($0.77 \AA$ resolution), of which 4057 were independent (average redundancy 2.943, completeness $=96.8 \%, \mathrm{R}_{\text {int }}=1.43 \%, \mathrm{R}_{\text {sig }}=1.23 \%$) and $3810(93.91 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$.The final cell constants of $\underline{\mathrm{a}}=7.1731(2) \AA, \underline{\mathrm{b}}=9.0580(3) \AA, \underline{\mathrm{c}}=15.2735(5) \AA, \alpha=96.9650(10)^{\circ}, \beta=$ $93.3370(10)^{\circ}, \gamma=112.6080(10)^{\circ}$, volume $=903.39(5) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 9559 reflections above $20 \sigma(\mathrm{I})$ with $4.931^{\circ}<2 \theta<55.07^{\circ}$. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.926 .

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P -1 , with $\mathrm{Z}=2$ for the formula unit, $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{4}$. The final anisotropic full-matrix least-squares refinement on F^{2} with 273 variables converged at $\mathrm{R} 1=3.43 \%$, for the observed data and $\mathrm{wR} 2=9.31 \%$ for all data. The goodness-of-fit was 1.055 . The largest peak in the final difference electron density synthesis was $0.362 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.232 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.045 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.439 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 408 \mathrm{e}^{-}$.

The crystal structure for D17 has been deposited at the Cambridge Crystallographic Data Center and allocated the reference no. CCDC 909193.

DatablockH_Report_20120067_20120067.CIF - ellipsoid plot

iured.
ing a narrowimum θ angle 19.3%, Rint =
, = 10.4533(7) ased upon the corrected for ısmission was
with $\mathrm{Z}=2$ for les converged rak in the final on of 0.056 e -
reference no.

D30

A specimen of $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}$ was used for the X -ray crystallographic analysis. The X -ray intensity data were measured.

The total exposure time was 1.90 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 9884 reflections to a maximum θ angle of $25.00^{\circ}(0.84 \AA$ resolution), of which 2794 were independent (average redundancy 3.538 , completeness $\left.=97.4 \%, \mathrm{R}_{\text {int }}=5.08 \%, \mathrm{R}_{\text {sig }}=4.98 \%\right)$ and $2495(89.30 \%)$ were greater than $2 \sigma\left(F^{2}\right)$. The final cell constants of $\underline{a}=16.640(8) \AA, \underline{b}=7.053(4) \AA, \underline{c}=14.173(7) \AA, \beta=101.753(8)^{\circ}$, volume $=$ $1628.5(14) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 7950 reflections above $20 \sigma(\mathrm{I})$ with 5.001° $<2 \theta<55.31^{\circ}$. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.807 .

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 1 21/c 1, with $\mathrm{Z}=4$ for the formula unit, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{2}$. The final anisotropic full-matrix least-squares refinement on F^{2} with 239 variables converged at $\mathrm{R} 1=7.36 \%$, for the observed data and $\mathrm{wR} 2=21.33 \%$ for all data. The goodness-of-fit was 1.106 . The largest peak in the final difference electron density synthesis was $0.448 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.485 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.089 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.364 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 700 \mathrm{e}^{-}$.

The crystal structure for D30 has been deposited at the Cambridge Crystallographic Data Center and allocated the reference no. CCDC 909191.

4. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

A3

D2

D4

Electronic Supplementary Material (ESI) for RSC Advances

D5

D14

D15

(110914-2/1

D18

Electronic Supplementary Material (ESI) for RSC Advances

D19

D20

D21

D23

D24

D25

D26

D28

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

D31

D32

D33

