Dielectric properties of silver nanoparticles coated with silica shells of different thicknesses

Jose Enrico Q. Quinsaat,^{a,b} Frank A. Nüesch,^a Heinrich Hofmann,^b Dorina M. Opris^a*

^aSwiss Federal Laboratories for Materials Science and Technology Empa, Laboratory for Functional Polymers, Ueberlandstr. 129, CH-8600, Dübendorf, Switzerland, and ^bEcole Polytechnique Fédérale de Lausanne (EPFL), Materials Institute, Powder Technology Laboratory (LTP), 1015 Lausanne, Switzerland

dorina.opris@empa.ch

Supporting Information

Figure 1. Wettability test in water/toluene for the $Ag@SiO_2$ (left) and that of hydrophobized with silane reagent (right). The hydrophobized particles are transferred in organic phase.

Figure 2. Solid-state ²⁹Si CP-MAS NMR spectrum of silver nanoparticles coated with silica shell and surface functionalized with octyl chains showing the chemical shift for the silicon nucleus of the surface-bound alkyl chains at $\delta = 13$ ppm.

Figure 3. SEM image of Ag@SiO₂ (6.6 nm) powder in pressed pellet. The sample was measured in high vacuum mode using 3 kV and a TLD detector.

Figure 4. SEM image of Ag@SiO2 (6.6 nm) powder in pressed pellet. The sample was measured in low vacuum mode using 7 kV and a LVD detector.

Figure 5. SEM image of Ag@SiO2 (6.6 nm) powder in pressed pellet. The sample was measured in low vacuum mode using 7 kV and a LVD detector.