Supporting Information

Efficient copper-catalyzed domino synthesis of

tetrazoloisoquinolines

Liangliang Shi,^a Ruji Wang,^a Haijun Yang,^a Yuyang Jiang^b and Hua Fu^{*a,b}

^a Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China. Fax: (+86) 10-62781695. E-mail: fuhua@mail.tsinghua.edu.cn
^b Key Laboratory of Chemical Biology (Guangdong Province), Graduate School of Shenzhen, Tsinghua University, Shenzhen 518057, P. R. China

Table of contents

General experimental procedures	P2
General procedure for synthesis of compounds 3a-t	P2
Characterization data of compounds 3a-t	P2
Crystal preparation and X-ray diffraction analysis of compound 3h	P8
References	P12
The ¹ H and ¹³ C NMR spectra of compounds 3a-t	P14

General experimental procedures

All reactions were carried out under nitrogen atmosphere. Proton and carbon magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded using tetramethylsilane (TMS) in the solvent of CDCl₃ as the internal standard (¹H NMR: TMS at 0.00 ppm, CDCl₃ at 7.26 ppm; ¹³C NMR: CDCl₃ at 77.26 ppm).

General procedure for synthesis of compounds 3a-t

Substituted 5-(2-halophenyl)-1*H*-tetrazole (**1**) (0.25 mmol), alkynes (**2**) (0.5 mmol), CuI (0.025 mmol, 5 mg), NaOAc (0.5 mmol, 41 mg) or K₂CO₃ (0.5 mmol, 69 mg) (see Table 2) and DMSO (2.5 mL) were added to a round bottom flask with a magnetic stirrer. The mixture was allowed to stir under nitrogen atmosphere at 100 °C for 24 h. After completion of the reaction, the resulting solution was cooled to room temperature, and the solution was removed with the aid of a rotary evaporator. The residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1) as eluent to provide the desired product (**3**).

Characterization data of compounds 3a-t

3a.¹ Eluent: petroleum ether/ethyl acetate (3:1). 5-Phenyltetrazolo[5,1-*a*]isoquinoline (54 mg, 88%) using 5-(2-bromophenyl)-1*H*-tetrazole (**1a**); (44 mg, 72%) using 5-(2-chorophenyl)-1*H*-tetrazole (**1g**). Light yellow solid, mp 216-219 °C (lit.¹ 210-211 °C). ¹H NMR (CDCl₃, 300 MHz) δ 8.81 (d, 1H, *J* = 6.9 Hz), 8.02 – 7.94 (m, 3H), 7.89-7.81 (m, 2H), 7.60- 7.56 (m, 3H), 7.49 (s, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ 148.9, 135.4, 132.5, 131.9, 131.4, 130.7, 129.6, 129.4, 129.1, 127.7, 125.4, 119.3, 116.6. ESI-MS: [M+H]⁺ m/z 247.2.

3b.¹ Eluent:petroleumether/ethylacetate(3:1).5-(p-Tolyl)tetrazolo[5,1-a]isoquinoline (54 mg, 82%).Light yellow solid, mp 213-215

^oC (lit.¹ 210-211 ^oC). ¹H NMR (CDCl₃, 300 MHz) δ 8.79 (d, 1H, J = 7.2 Hz), 7.94-7.78 (m, 5H), 7.44 (s, 1H), 7.40 (s, 1H), 7.37 (s, 1H), 2.47 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 148.9, 141.0, 135.4, 132.5, 131.9, 129.8, 129.3, 129.2, 128.5, 127.6, 125.3, 119.1, 116.1, 21.8. ESI-MS: [M+H]⁺ m/z 261.1.

3c. Eluent: petroleum ether/ethyl (3:1). acetate 5-(4-Ethylphenyl)tetrazolo[5,1-a]isoquinoline (60 87%) mg, using 5-(2-bromophenyl)-1*H*-tetrazole (43)63%) (1a);using mg, 5-(2-chorophenyl)-1*H*-tetrazole (**1g**). Light yellow solid, mp 134-136 °C. ¹H NMR $(CDCl_3, 300 \text{ MHz}) \delta 8.77 \text{ (td, 1H, } J = 8.1 \text{ Hz}, J = 1.7 \text{ Hz}), 8.92-7.90 \text{ (m, 3H)}, 7.84 - 1.00 \text{ (m, 3H)}, 7.84 + 1.00 \text{ (m, 3H)}, 7.84 + 1.00 \text{ (m, 3$ 7.74 (m, 2H), 7.44 (s, 1H), 7.42 (s, 1H), 7.39 (s, 1H), 2.76 (q, 2H, J = 7.6 Hz), 1.32 (t, 3H, J = 7.6 Hz). ¹³C NMR (CDCl₃, 75 MHz) δ 148.8, 147.3, 135.4, 132.5, 131.9, 129.3, 128.7, 128.6, 127.6, 125.3, 119.1, 116.1, 29.0, 15.6. HR-MS (ESI): [M+H]⁺ m/z calcd for (C₁₇H₁₄N₄+H⁺) 275.1297, found 275.1293.

3d.¹ Eluent: petroleum ether/ethyl acetate (3:1). 5-(4-Methoxyphenyl)tetrazolo[5,1-*a*]isoquinoline (62 mg, 90%) Light yellow solid, mp 198-200 °C (lit.¹ 195-196 °C) . ¹H NMR (CDCl₃, 300 MHz) δ 8.78 (d, 1H, *J* = 7.2 Hz), 7.99 (s, 1H), 7.96 (s, 1H), 7.92 (d, 1H, *J* = 7.6 Hz), 7.83-7.77 (m, 2H), 7.42 (s, 1h), 7.11 (s, 1h), 7.08 (s, 1h), 3.91 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 161.5, 148.9, 135.2, 132.6, 131.9, 130.9, 129.2, 127.5, 125.4, 123.4, 119.0, 115.6, 114.5, 55.7. ESI-MS: [M+H]⁺ m/z 277.1.

3e. Eluent:petroleumether/ethylacetate(3:1).5-(4-Ethoxyphenyl)tetrazolo[5,1-a]isoquinoline(63mg,86%)using

5-(2-bromophenyl)-1*H*-tetrazole (**1a**); (51 mg, 68%) using 5-(2-chorophenyl)-1*H*-tetrazole (**1g**). Light yellow solid, mp 171-173 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.76 (dd, 1H, J = 8.1 Hz, J = 1.2 Hz), 7,96-7.89 (m, 3H), 7.83-7.73 (m, 2H), 7.41 (s, 1H), 7.08 (s, 1H), 7.05 (s, 1H), 4,13 (q, 2H, J = 6.9 Hz), 1.47 (t, 3H, J = 6.9 Hz). ¹³C NMR (CDCl₃, 75 MHz) δ 160.9, 148.9, 135.2, 132.6, 131.9, 130.8, 129.2, 127.5, 125.3, 123.4, 118.9, 115.4, 114.9, 63.9, 15.0. HR-MS (ESI): [M+Na]⁺ m/z calcd for (C₁₇H₁₄N₄O+Na⁺) 313.1065, found 313.1058.

3f. Eluent: petroleum ether/ethyl acetate (3:1). 5-(4-Fluorophenyl)tetrazolo[5,1-*a*]isoquinoline (62 mg ,94%). Light yellow solid, mp 243-245 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.81 (d, 1H, *J* = 6.9 Hz), 7.86-7.83 (m, 3H), 7.86-7.836 (m, 2H), 7.47 (s, 1H), 7.30-7.28 (m, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ 164.2 (*J* = 254.0 Hz), 148.9, 134.3, 132.4, 132.0, 131.6 (*J* = 8.6 Hz), 129.7, 127.7, 125.5, 119.3, 116.5, 116.4, 116.3. HR-MS (ESI): [M+Na]⁺ m/z calcd for (C₁₅H₉FN₄+Na⁺) 287.0709, found 287.0698.

3g. Eluent: petroleum ether/ethyl acetate (3:1). 5-(4-Chlorophenyl)tetrazolo[5,1-*a*]isoquinoline (65 mg, 93%). Light yellow solid, mp 236-238 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.81 (d, 1H, *J* = 6.9 Hz), 7.98-7.94 (m, 3H), 7.89-7.81 (m, 2H), 7.89 (s, 1H), 7.56 (s, 1H), 7.48 (s, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ 148.9, 136.9, 134.2, 133.9, 132.3, 132.1, 130.7, 129.8, 129.4, 127.8, 125.5, 119.4, 116.7. HR-MS (ESI): [M+Na]⁺ m/z calcd for (C₁₅H₉ClN₄+Na⁺) 303.0413, found 313.0404.

3h. Eluent: petroleum ether/ethyl acetate (3:1). 5-Hexyltetrazolo[5,1-a]isoquinoline

(53 mg, 83%) using 5-(2-bromophenyl)-1*H*-tetrazole (**1a**); (23 mg, 36%) using 5-(2-chorophenyl)-1*H*-tetrazole (**1g**). White solid, mp 101-103 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.66 (dd, 1H, *J* = 7.9 Hz, *J* = 0.7 Hz), 7.81-7.66 (m, 3H), 7.12 (s, 1H), 3.24 (t, 2H, *J* = 7.7 Hz), 1.94-1.84 (m, 2H), 1.47-1.21 (m, 6H), 0.86 (t, 3H, *J* = 7.1 Hz). ¹³C NMR (CDCl₃, 75 MHz) δ 148.2, 136.3, 132.3, 131.6, 128.7, 127.0, 125.0, 118.7, 111.5, 31.6, 31.0, 29.0, 26.9, 22.7, 14.2. HR-MS (ESI): [M+Na]⁺ m/z calcd for (C₁₅H₁₈N₄+Na⁺) 277.1429, found 277.1422.

3i.² Eluent: petroleum ether/ethyl acetate (3:1).Tetrazolo[5,1-*a*]isoquinoline (23 mg, 52%). White solid, mp 139-141 °C (lit.² 141-142 °C). ¹H NMR (CDCl₃, 300 MHz) δ 8.78-8.74 (m, 1H), 8.56 (d, 1H, *J* = 7.2 Hz), 7.95-7.92 (m, 1H), 7.45 (d, 1H, *J* = 7.2 Hz). ¹³C NMR (CDCl₃, 75 MHz) δ 148.2, 131.9, 130.0, 127.9, 125.3, 121.3, 120.0, 117.9. ESI-MS: [M+H]⁺ m/z 171.2.

3j. Eluent: petroleum ether/ethyl (3:1). acetate 8-Methyl-5-phenyltetrazolo[5,1-*a*]isoquinoline 88%) using (57mg, 5-(2-bromo-4-methylphenyl)-1*H*-tetrazole 66%) (**1b**); (43mg, using 5-(2-chloro-4-methylphenyl)-1*H*-tetrazole (1h). Light yellow solid, mp 189-191 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.59 (d, 1H, J = 8.3 Hz), 7,97-7.94 (m, 2H), 7.65 (s, 1H), 7.57-7.52 (m, 4H), 7.35 (s, 1H), 2.56 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 148.7, 142.6, 135.1, 132.5, 131.4, 131.1, 130.5, 129.2, 128.9, 127.3, 124.9, 116.8, 116.3, 22.1. HR-MS (ESI): $[M+Na]^+ m/z$ calcd for $(C_{16}H_{12}N_4+Na^+)$ 283.0960, found 283.0950.

5-(4-Ethylphenyl)-8-methyltetrazolo[5,1-a]isoquinoline (61 mg, 85%) using 5-(2-bromo-4-methylphenyl)-1*H*-tetrazole (1b); (41 7%) mg, using 5-(2-chloro-4-methylphenyl)-1*H*-tetrazole (1h). Light yellow solid, mp 158-160 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.59 (d, 1H, J = 8.3 Hz), 7.89 (s, 1H), 7.87 (s, 1H), 7.63 (s, 1H), 7.55 (d, 1H, J = 8.3 Hz), 7.39 (s, 1H), 7.36 (s, 1H), 7.33 (s, 1H), 2.75(q, 1H), 2.75(q, 1H)), 7.35 (s, 1H), 7.35 (s, 1H)), 7.35 (s, 1H), 7.35 (s, 1H)), 7.35 (s, 1H)) 2H, J = 7.6 Hz), 2.56(s, 3H), 1.31(t, 3H, J = 7.6 Hz). ¹³C NMR (CDCl₃, 75 MHz) δ 148.7, 147.1, 142.5, 135.2, 132.6, 130.9, 129.2, 128.7, 128.5, 127.2, 124.9, 116.7, 115.8, 28.9,22.1, 15.5. HR-MS (ESI): $[M+Na]^+$ m/z calcd for (C₁₈H₁₆N₄+Na⁺) 311.1273, found 311.1264.

31. Eluent: petroleum ether/ethyl acetate (3:1). 5-(4-Methoxyphenyl)-8-methyltetrazolo[5,1-*a*]isoquinoline (63 mg, 86%). Light yellow solid, mp 208-210 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.62 (d, 1H, *J* = 8.6 Hz), 7.95 (s, 1H), 7.93 (s, 1H), 7.66 (s, 1H), 7.57 (d, 1H, *J* = 8.3 Hz), 7.32 (s, 1H), 7.08 (s, 1H), 7.06 (s, 1H), 3.90 (s, 3H), 2.58 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 161.4, 148.8, 142.5, 135.1, 132.8, 130.8, 127.2, 125.1, 123.8, 116.7, 115.3, 114.5, 55.7, 22.2. HR-MS (ESI): [M+Na]⁺ m/z calcd for (C₁₇H₁₄N₄O+Na⁺) 313.1065, found 313.1054.

3m. Eluent: petroleum ether/ethyl acetate (3:1). 5-(4-Fluorophenyl)-8-methyltetrazolo[5,1-*a*]isoquinoline (63 mg, 91%). Light yellow solid, mp 235-237 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.67 (d, 1H, *J* = 7.6 Hz), 8.01-7.99 (m, 2H), 7.72 (s, 1H), 7.63 (d, 1H, *J* = 8.3 Hz), 7.37 (s, 1H), 7.29-7.26 (m, 2H), 2.61 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 164.1 (*J* = 254.1 Hz), 148.9, 142.8, 134.2, 132.6, 131.5, 131.4, 131.3, 127.4, 125.3, 117.0, 116.3, 116.2, 22.2. HR-MS (ESI): [M+Na]⁺ m/z calcd for (C₁₆H₁₁FN₄+Na⁺) 301.0865, found 301.0859.

3n. Eluent: petroleum ether/ethyl acetate (3:1). 5-(4-Chlorophenyl)-8-methyltetrazolo[5,1-*a*]isoquinoline (68 mg, 93%). Light yellow solid, mp 219-221 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.66 (d, 1H, *J* = 8.3 Hz), 7.96 (s, 1H), 7.95 (s, 1H), 7.72 (s, 1H), 7.63 (d, 1H, *J* = 8.3 Hz), 7.57 (s, 1H), 7.54 (s, 1H), 7.40 (s, 1H), 2.61 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 148.9, 142.8, 136.8, 134.1, 133.9, 132.5, 131.5, 130.6, 129.4, 127.5, 125.3, 117.1, 116.5, 22.3. HR-MS (ESI): [M+Na]⁺ m/z calcd for (C₁₆H₁₁ClN₄+Na⁺) 317.0570, found 317.0560.

30. Eluent: petroleum ether/ethyl (3:1). acetate 5-Hexyl-8-methyltetrazolo[5,1-a]isoquinoline (59 88%) using mg, 5-(2-bromo-4-methylphenyl)-1H-tetrazole (**1b**); (22)32%) mg, using 5-(2-chloro-4-methylphenyl)-1*H*-tetrazole (1h). White solid, mp 86-88 °C. ¹H NMR $(CDCl_3, 300 \text{ MHz}) \delta 8.47 \text{ (d, 1H, } J = 7.9 \text{ Hz}), 7.51 \text{ (s, 1H)}, 7.44 \text{ (dd, 1H, } J = 8.1 \text{ Hz},$ J = 1.2 Hz), 6.97 (s, 1H), 3.16 (t, 3H, J = 7.6 Hz), 1.88-1.77 (m, 2H), 1.39-1.31 (m, 6H), 0.81 (t, 3H, J = 7.1 Hz). ¹³C NMR (CDCl₃, 75 MHz) δ 148.2, 142.2, 136.2, 132.5, 130.3, 126.7, 124.9, 116.5, 114.3, 31.6, 30.9, 29.1, 26.9, 22.7, 22.1, 14.2. HR-MS (ESI): $[M+Na]^+$ m/z calcd for (C₁₆H₂₀N₄+Na⁺) 291.1586, found 291.1573.

3p. Eluent: petroleum ether/ethyl acetate (3:1). 9-Fluoro-5-phenyltetrazolo[5,1-*a*]isoquinoline (48 mg, 72%). Light yellow solid, mp 229-231 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.45 (dd, 1H, *J* = 8.4 Hz, *J* = 2.6 Hz), 8.00-7.95 (m, 3H), 7.63-7.56 (m, 4H), 7.48 (s, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ 162.6 (*J* = 252.1 Hz), 148.5, 134.8, 131.1, 130.8, 130.3 (*J* = 9.4 Hz), 129.4, 129.2, 121.5 (*J* = 23.8 Hz), 120.8 (*J* = 10.1 Hz), 115.9, 111.2, 110.8. HR-MS (ESI): [M+Na]⁺ m/z calcd for (C₁₅H₉FN₄+Na⁺) 287.0709, found 287.0702.

3q. Eluent: petroleum ether/ethyl acetate (3:1). 9-Fluoro-5-hexyltetrazolo[5,1-*a*]isoquinoline (60 mg, 88%).White solid, mp 113-115 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.35 (dd, 1H, *J* = 8.3 Hz, *J* = 2.6 Hz), 7.87 (q, 1H, *J* = 3.4 Hz), 7.54 (td, 1H *J* = 8.6 Hz), 7.17 (s, 1H), 3.28 (t, 2H, *J* = 7.7 Hz), 1.99-1.88 (m, 2H,), 1.52-1.31 (m, 6H), 0.91 (t, 3H, *J* = 7.1 Hz). ¹³C NMR (CDCl₃, 75 MHz) δ 162.1 (*J* = 252.4 Hz), 147.9, 135.8, 129.6 (*J* = 9.4 Hz), 120.7 (*J* = 23.8 Hz), 120.2 (*J* = 10.1 Hz), 113.9, 110.8, 110.5, 31.6, 30.9, 29.1, 26.9, 22.7, 14.2. HR-MS (ESI): [M+Na]⁺ m/z calcd for (C₁₅H₁₇FN₄+Na⁺) 295.1335, found 295.1328.

3r. Eluent: petroleum ether/ethyl acetate (3:1). 8-Chloro-5-hexyltetrazolo[5,1-*a*]isoquinoline (36 mg, 49%).White solid, mp 129-131 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.67 (d, 1H, *J* = 8.3 Hz), 7.85 (d, 1H, *J* = 2.1 Hz), 7.71 (dd, 1H, *J* = 8.6 Hz, *J* = 2.1 Hz), 7.09 (s, 1H), 3.30 (t, 3H, *J* = 7.6 Hz), 1.96-1.91 (m, 2H), 1.51-1.47 (m, 2H), 1.39-1.32 (m, 4H), 0.91 (t, 3H, *J* = 7.2 Hz). ¹³C NMR (CDCl₃, 75 MHz) δ 148.0, 138.0, 137.9, 133.5, 129.5, 126.8, 126.4, 117.2, 113.4, 31.6, 31.1, 29.1, 26.9, 22.7, 14.3. HR-MS (ESI): [M+Na]⁺ m/z calcd for (C₁₅H₁₇ClN₄+Na⁺) 311.1039, found 311.1034.

3s. Eluent: petroleum ether/ethyl acetate (3:1). 5-Phenyl-9-(trifluoromethyl)tetrazolo[5,1-*a*]isoquinoline (62 mg, 79%). Light yellow solid, mp 239-241 °C. ¹H NMR (CDCl₃, 300 MHz) δ 9.13 (s, 1H), 8.09-8.01 (m, 4H), 7.64-7.62 (m, 3H), 7.55 (s, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ 148.6, 137.5, 134.5, 131.3, 130.7, 129.5, 129.3, 128.9 (d, *J* = 39.4 Hz), 128.6, 128.1, 123.7 (q, *J* = 273.1 Hz), 123.1, 119.1, 115.6. HR-MS (ESI): [M+Na]⁺ m/z calcd for (C₁₆H₉F₃N₄+Na⁺) 337.0677, found 337.0668.

3t. ether/ethyl Eluent: petroleum (3:1). acetate 9-Nitro-5-phenyltetrazolo[5,1-a]isoquinoline (46 63%) using mg, 5-(2-bromo-5-nitrophenyl)-1H-tetrazole (1f);(42)56%) mg, using 5-(2-chloro-5-nitrophenyl)-1*H*-tetrazole (1i). Yellow solid, mp 231-233 °C. ¹H NMR $(CDCl_3, 300 \text{ MHz}) \delta 9.68 \text{ (d, 1H, } J = 2.1 \text{ Hz}), 8.64 \text{ (dd, 1H, } J = 8.9 \text{ Hz}, J = 2.1 \text{ Hz}),$ 8.14 (d, 1H, J = 8.9 Hz), 8.05-8.04 (m, 2H), 7.65-7.63(m, 2H), 7.59(s, 1H). ¹³C NMR (CDCl₃, 75 MHz) & 148.7, 147.5, 138.8, 136.2, 131.7, 130.4, 129.5, 129.4, 129.3, 125.9, 121.6, 119.3, 115.2. HR-MS (ESI): $[M+Na]^+ m/z$ calcd for $(C_{15}H_9N_5O_2+Na^+)$ 314.0654, found 314.0642.

Crystal preparation and X-ray diffraction analysis of compound 3h

Crystal preparation of compound 3h. Compound **3h** (30 mg) was dissolved in 10 mL of CHCl₃, and it was crystallized to give crystal as colorless triclinic after the solvent was slowly volatilized in 2 days at room temperature (~ 25 °C). *The crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number (CCDC 913654).*

X-Ray diffraction analysis of compound 3h. The low temperature (103.6°K) single-crystal X-ray experiments were performed on a X calibur, Eos, Gemini diffractometer equipped with graphite monochromatized Mo K_{α} radiation. Unit cell was obtained and refined by 4129 reflections with 3.4° < θ < 29.1°. No decay was observed except the statistic fluctuation in the data collection. Raw intensities were corrected for Lorentz and polarization effects. Direct phase determination yielded the positions of all non-hydrogen atoms. All non-hydrogen atoms were subjected to anisotropic refinement. All hydrogen atoms were generated geometrically with C-H bonds of 0.93-0.96 Å according to criteria described in the SHELXTL manual (Bruker, 1997). They were included in the refinement with U_{iso}(H) = 1.2U_{eq} (for C) and 1.5 U_{eq} (for methyl). The final full-matric least-square refinement on F^2 converged with R1 =

0.0532 and wR2 = 0.1358 for 2588 observed reflections [I $\ge 2\sigma(I)$]. The final difference electron density map shows no features. Details of crystal parameters, data collection and structure refinement are given in Table 1.

Data collection was controlled by CrysAlis^{Pro} (Oxford, 2011).³ Computations were performed using the SHELXTL NT ver. 5.10 program package (Bruker, 1997)⁴ on an IBM PC computer. Analytic expressions of atomic scattering factors were employed, and anomalous dispersion corrections were incorporated (*International Tables for X-ray Crystallography*, 1989).⁵ Crystal drawings were produced with XP (Bruker, 1998).

Sample code	EXP-1015	
Molecular formula	$C_{15}H_{18}N_4$	
Molecular weight	254.33	
Temperature	103.6 K	
Crystal system	triclinic	
Space group	<i>P</i> -1	
Unit cell parameters	$a = 8.2705(16) \text{ \AA} \alpha = 82.682^{\circ}(14)$ $b = 9.4515(14) \text{ \AA} \beta = 64.188^{\circ}(19)$ $c = 9.4618(19) \text{ \AA} \gamma = 85.910^{\circ}(14)$	
Density (calcd)	1.279 g/cm ³	
Volume/A ³	660.3(2)	
Ζ	2	
μ / mm ⁻¹	0.079 mm ⁻¹	
<i>F</i> (000)	272	
Crystal size	$0.80 \times 0.30 \times 0.10 \text{ mm}$	
2Θ range for data collection	6.82 to 52°	
Index range	$-10 \le h \le 9, -11 \le k \le 11, -11 \le l \le 11;$	
Reflections collected	4129	
Independent reflections	2588[R(int) = 0.0328 (inf-0.9Å)]	
Data/restraints/parameters	2588/0/173	
Goodness-of-fit on F ²	1.055	
Final R indexes [I>2 σ (I) i.e. Fo>4 σ (Fo)]	R1 = 0.0532, $wR2 = 0.1358$	
Final R indexes [all data]	R1 = 0.0674, wR2 = 0.1483	
Largest diff. peak/hole / e Å ⁻³	0.286/-0.341	
Flack Parameters	Ν	
Completeness	0.997	

Table 1 Crystal data and structure refinement for compound 3h

Atoms	X	у	Z.	$U_{\it eq.}$
N(1)	2815.1(17)	5848.5(13)	1978.9(14)	20.7(13)
C(9)	2311(2)	4765.3(16)	1382.6(18)	21.0(4)
C(1)	3549(2)	7108.9(16)	1143.4(18)	20.8(4)
C(7)	3354(2)	6341.3(16)	-1114.8(18)	21.6(4)
C(2)	3808(2)	7423.6(16)	-461.8(18)	20.5(4)
C(13)	-136(2)	-179.9(16)	2176.8(17)	22.7(4)
N(4)	3909.9(18)	7842.1(14)	2076.3(15)	25.8(4)
C(10)	1506(2)	3466.1(16)	2512.7(18)	23.9(4)
C(3)	4495(2)	8724.3(16)	-1378.3(18)	22.8(4)
C(5)	4313(2)	7870.1(17)	-3588.5(18)	24.5(4)
N(2)	2719.7(19)	5803.5(14)	3461.8(15)	25.3(4)
C(11)	1099(2)	2289.9(16)	1755.3(18)	23.5(4)
C(6)	3630(2)	6595.4(16)	-2705.5(18)	23.1(4)
N(3)	3377.2(19)	7002.2(14)	3483.1(15)	28.5(4)
C(14)	-926(2)	-1502.5(16)	3337.9(18)	25.6(4)
C(8)	2601(2)	5024.8(15)	-146.1(17)	21.2(4)
C(15)	-1518(2)	-2623.6(17)	2650(2)	31.3(4)
C(12)	345(2)	967.5(16)	2911.9(18)	23.7(4)
C(4)	4735(2)	8940.6(17)	-2919.3(18)	23.8(4)

Table 2 Fractional atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å²×10³) for compound **3h**

 $U_{eq.}$ defined as one third of the trace of the orthogonalized UIJ tensor.

		() 101 001110 011	
N(1)-C(9)	1.398(2)	C(13)-C(14)	1.529(2)
N(1)-C(1)	1.363(19)	C(13)-C(12)	1.520(2)
N(1)-N(2)	1.366(18)	N(3)-N(4)	1.366(19)
C(9)-C(10)	1.502(2)	C(10)-C(11)	1.526(2)
C(9)-C(8)	1.351(2)	C(3)-C(4)	1.373(2)
C(1)-C(2)	1.432(2)	C(5)-C(6)	1.378(2)
C(1)-N(4)	1.328(2)	C(5)-C(4)	1.397(2)
C(7)-C(2)	1.410(2)	N(2)-N(3)	1.297(19)
C(7)-C(6)	1.411(2)	C(11)-C(12)	1.522(2)
C(7)-C(8)	1.449(2)	C(14)-C(15)	1.521(2)
C(2)-C(3)	1.409(2)		
C(1)-N(1)-C(9)	125.07(14)	C(3)-C(2)-C(7)	120.37(15)
C(1)-N(1)-N(2)	108.84(13)	C(12)-C(13)-C(14)	112.89(13)
N(2)-N(1)-C(9)	126.05(13)	C(1)-N(4)-N(3)	105.57(12)
N(1)-C(9)-C(10)	116.43(14)	C(9)-C(10)-C(11)	113.56(13)
C(8)-C(9)-N(1)	115.55(13)	C(4)-C(3)-C(2)	120.01(15)
C(8)-C(9)-C(10)	128.02(15)	C(6)-C(5)-C(4)	120.46(15)

Table 3 Bond lengths (Å) and bond angles (°) for compound 3h

N(1)-C(1)-C(2)	120.16(14)	N(3)-N(2)-N(1)	105.15(12)
N(4)-C(1)-N(1)	107.99(14)	C(12)-C(11)-C(10)	112.47(14)
N(4)-C(1)-C(2)	131.86(14)	C(5)-C(6)-C(7)	120.80(15)
C(2)-C(7)-C(6)	118.11(14)	N(2)-N(3)-N(4)	122.46(13)
C(2)-C(7)-C(8)	119.80(14)	C(15)-C(14)-C(13)	113.55(14)
C(6)-C(7)-C(8)	122.09(14)	C(9)-C(8)-C(7)	123.04(15)
C(7)-C(2)-C(1)	116.31(14)	C(13)-C(12)-C(11)	112.48(13)
C(3)-C(2)-C(1)	123.31(15)	C(3)-C(4)-C(5)	120.24(14)

Table 4 Anisotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for compound **3h**

Atoms	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
N(1)	24.3(7)	18.9(7)	19.8(7)	-0.9(5)	-10.1(6)	-4.1(5)
C(9)	22.3(8)	15.9(8)	25.6(8)	-2.0(6)	-10.8(7)	-3.0(6)
C(1)	21.0(8)	17.9(8)	25.3(8)	-3.8(6)	-10.7(7)	-3.3(6)
C(7)	20.7(8)	20.4(8)	25.2(8)	-3.2(6)	-10.9(7)	-2.3(6)
C(2)	20.4(8)	19.5(8)	22.6(8)	-3.1(6)	-9.6(7)	-2.6(6)
C(13)	25.2(8)	21.9(9)	21.9(8)	-2.3(6)	-10.5(7)	-4.1(6)
N(4)	32.3(8)	24.2(7)	24.9(7)	-4.7(6)	-14.7(6)	-5.5(6)
C(10)	27.8(9)	21.3(9)	23.1(8)	-0.4(6)	-11.3(7)	-5.1(7)
C(3)	23.3(8)	20.1(8)	27.6(9)	-4.4(6)	-12.1(7)	-5.2(6)
C(5)	26.1(8)	27.4(9)	21.3(8)	-0.9(6)	-11.5(7)	-2.6(7)
N(2)	31.3(8)	25.6(8)	23.4(8)	-2.6(5)	-15.2(6)	-4.7(6)
C(11)	25.6(8)	21.6(9)	24.1(8)	0.0(6)	-11.3(7)	-5.4(6)
C(6)	25.4(8)	23.6(9)	22.7(8)	-4.2(6)	-11.4(7)	-4.3(7)
N(3)	35.3(8)	26.9(8)	27.9(8)	-3.5(6)	-16.8(6)	-6.7(6)
C(14)	27.3(9)	25.0(9)	24.6(8)	-2.9(7)	-10.2(7)	-7.8(7)
C(8)	24.5(8)	17.3(8)	23.6(8)	-3.1(6)	-11.2(7)	-4.4(6)
C(15)	33.7(10)	24.7(9)	38.1(10)	-6.7(7)	-15.5(8)	-8.9(7)
C(12)	26.9(8)	21.2(8)	24.6(8)	-0.8(6)	-12.1(7)	-5.8(6)
C(4)	24,4(8)	18.8(8)	26.1(8)	2.0(6)	-9.4(7)	-5.2(6)

The Anisotropic displacement factor exponent takes the form: -2 π ^2[h^2a^2U_{11}+...+2hka \times b \times U_{12}]

Table 5 Hydrogen atom coordinates ($Å \times 10^4$) and isotropic displacement parameters ($Å^2 \times 10^3$) for compound **3h**

Atoms	x	у	Z.	$U_{\it eq.}$	
H(13A)	957	-465	1264	27	
H(13B)	-1016	221	1778	27	
H(3C)	379	3751	3393	29	
H(4A)	2347	3081	2963	29	

H(3)	4792	9452	-930	27	
H(5)	4498	8022	-4660	29	
H(11A)	222	2660	1339	28	
H(11B)	2216	2023	854	28	
H(6)	3342	5879	-3173	28	
H(14A)	-17	-1935	3687	31	
H(14B)	-1973	-1206	4281	31	
H(8)	2299	4311	-607	25	
H(15A)	-493	-2917	1709	47	
H(15B)	-2472	-2223	2360	47	
H(15C)	-1970	-3454	3437	47	
H(12A)	1243	573	3292	28	
H(12B)	-743	1242	3836	28	
H(4)	5189	9821	-3533	29	

Figure 1. ORTEP drawing of $C_{15}H_{18}N_4$ with 50% probability ellipsoids, showing the atomic numbering scheme.

References

- 1 C.-W. Tsai, S.-C. Yang, Y.-M. Liu, M.-J. Wu. Tetrahedron 2009, 65, 8367.
- 2 J. M. Keith. J. Org. Chem. 2006, 71, 9540.
- 3 Oxford (2011) CrysAlis^{Pro}, Version 1.171.35.11, Oxford Diffraction Ltd.
- 4 Bruker. (1997) SHELXTL. Structure Determination Programs, Version 5.10, Bruker AXS Inc.,6300 Enterprise Lane, Madison, WI 53719-1173, USA.
- 5 International Tables for X-ray Crystallography: (1989) Vol. C (Kluwer Academic Publishers, Dordrecht) Tables 4.2.6.8 and 6.1.1.4.

abundance 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 220.0 X : parts per Million : 13C 210.0 200.0 190.0 180.0 źŃ N 170.0 <u>ى</u> 160.0150.0 148.2191 140.0 131.8512 130.0156 127.8549 125.3309 121.3059 120.0343 117.8545 130.0 \// | 110.0 100.0 90.0 80.0 77.6807 77.2600 76.8298 \geq 70.0 0.0 50.0 40.0 30.0 20.0 10.0 --10.0 -20.0

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013 abundance 220.0 X : parts per Million : 13C 210.0 200.0 190.0 180.0 170.0 160.0 150,0 148.7261 147.5292 \geq 140,0 130.0 120,0

