Supporting information

One-pot synthesis of carbon-decorated FePt nanopartices and their application for

label-free electrochemical impedance sensing of DNA hybridization

Libin Wang^{a,b},Xiuwen Zheng^{*a,b},Wei Zhang^{*a,b}, Xianqing Quan^c, Qitu Hu^a,

Wenjie Wu^a,Peisong Zong^a,Mingzai Wu^d

^aSchool of Chemistry and Chemical Engineering ^bKey Laboratory of Resources & Environmental Analytical Chemistry in University of Shandong, Linyi University, ^cCollege of Life Science Linyi University,Linyi, Shandong, 276000, P.R.China Tel(Fax):+86-539-8766600 ^dSchool of Physics and Materials Science Anhui University, Hefei 230039, P.R.China *E-mail: xwzheng1976@gmail.com; zhangweiqust@126.com

Figure S1. TEM image of aggregated FePt NPs, without the assistance of CNTs or GO

Figure S2. EDS analysis of as-prepared samples, revealing the atom ratio of Fe to Pt (a)45:55 for FePt/CNTs (b)48:52 for FePt/GO (c) XRD pattern for FePt/CNTs, indicating a chemically disordered fcc structure for as-prepared and chemically ordered fct structure for annealed samples.

Figure S3. The influence of solvents on the morphology and density of as-prepared samples(a)FePt/CNTs and (b)FePt/GO using EG as solvent and reducing agent.(c) FePt/CNTs,using DMSO as solvents and EG as reducing agent. (d) FePt/CNTs, using OAm and OA as solvents and EG as reducing agent.

Figure S4. CVs (A) and Nyquist diagrams (B) of 1.0 mM [Fe(CN)₆]^{3-/4-} recorded at (a) bare GCE, (b) FePt/GCE, (c) FePt/CNTs/GCE and (d) FePt/GO/GCE. The histograms of above CV (C, D) and EIS (E) results.

electrode	R_{et} value/ Ω
GCE	885
FePt/GCE	592
FePt/CNTs/GCE	317
FePt/GO/GCE	320
ssDNA/FePt/CNTs/GCE	1120
dsDNA/FePt/CNTs/GCE	2250
ncDNA/FePt/CNTs/GCE	1160
single-base mismatched DNA/FePt/CNTs/GCE	2000
double-base mismatched DNA/FePt/CNTs/GCE	1450
ssDNA/FePt/GO/GCE	1220
dsDNA/FePt/GO/GCE	2680
ncDNA/FePt/GO/GCE	1250
single-base mismatched DNA/FePt/GO/GCE	2350
double-base mismatched DNA/FePt/GO/GCE	1590

Table S1. The statistical result of R_{et} values with different modified electrodes

electrode	i _{pa} value/μA	i _{pc} value/µA
GCE	14.7	14.9
FePt/GCE	23.1	23.4
FePt/CNTs/GCE	53.1	53.5
FePt/GO/GCE	52.5	52.9

Table S2. The statistical result of i_{p} values with different modified electrodes