ELECTRONIC SUPPLIMENTARY MATERIAL

Complexation of trivalent lanthanides and actinides with several novel diglycolamide-functionalized calix[4]arenes: Solvent extraction, luminescence and theoretical studies

Dhaval R. Raut,^a Prasanta K. Mohapatra,^{a,*} Seraj A. Ansari,^a Shrikant V. Godbole,^a Mudassir Iqbal,^b Debashree Manna,^c Tapan K. Ghanty,^c Jurrian Huskens^b and Willem Verboom^b

Solvent extraction studies

Fig. S-1: Dependence of Am(III) extraction with C4DGA (L_I) concentration (a) NPOE; (b) Hexone; (c) Nitrobenzene; (d)Chloroform; (e) n-dodecane.

(a)

(c)

(e)

Fig. S-2: Dependence of $D_{\rm Am}$ and D_{Eu} on dielectric constant

Fluorescence spectroscopy studies

Table S-1: Different luminescence spectral peaks for Eu^{3+} ions. $[Eu^{3+}]$: 10⁻⁵ mol/L; Diluent: Ethanol / water (5:1) in aqueous nitrate medium at pH 3; Excitation wavelength: 535 nm

Peaks (nm)	Transition	Life time (µs)
591	${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{1}$	143
617	${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{2}$	158
692	${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{4}$	147

Table S-2: Peak intensity ratio of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition in luminescence spectra of Eu³⁺ solution containing 10⁻⁵ mol/L Eu(NO₃)₃ and increasing amount of ligand. Diluent: Ethanol / water (5:1) in aqueous nitrate medium at pH 3; Excitation wavelength: 535 nm.

I ₆₁₇ / I ₅₉₁	
1.02	
1.21	
1.40	
1.45	
1.61	
1.62	
1.49	
1.59	
1.64	
1.70	
1.65	
1.66	
	$\begin{array}{c} \mathbf{I_{617} / I_{591}} \\ \hline 1.02 \\ 1.21 \\ 1.40 \\ 1.45 \\ 1.61 \\ 1.62 \\ 1.49 \\ 1.59 \\ 1.64 \\ 1.70 \\ 1.65 \\ 1.66 \end{array}$