Supporting Information

Copper-Catalyzed Oxidative Esterification of Aldehydes with Dialkyl

Peroxides: Efficient Synthesis of Esters of Tertiary Alcohols

Yefeng Zhu and Yunyang Wei*

School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; E-mail: <u>ywei@mail.njust.edu.cn</u>

Table of Contents

1.	General considerations
2.	Preparation of Mannich bases L6-L9 and Imine L13
3.	General procedure for oxidative esterification reaction and reaction condition
	screenings
4.	Characterization date of esters tertiary alcohols
5.	¹ H NMR and ¹³ C NMR spectra
6.	References

1. General considerations

¹H NMR spectra were obtained with TMS as internal standard in CDCl₃ using a Bruker DRX 500 (500 MHz) spectrometer. Spectra were referenced internally to the residual proton resonance in CDCl₃ (δ 7.26 ppm), or with tetramethylsilane (TMS, δ 7.26 ppm) as the internal standard. Chemical shifts (δ) were reported as part per million (ppm) in δ scale downfield from TMS. ¹³C NMR spectra were referenced to $CDCl_3$ (δ 77.0 ppm, the middle peak). Coupling constants (J) were reported in Hertz (Hz). Gas chromatography (GC) analysis was performed on an Agilent GC-6820 chromatograph equipped with a 30 m \times 0.32 mm \times 0.5 µm HP-Innowax capillary column and aflame ionization detector. GC-MS spectra were recorded on Thermo Trace DSQ GC-MS spectrometer using a TRB-5MS (30 m \times 0.25 mm \times 0.25µm) column. Melting points were determined on a Yamato melting apparatus Model MP-21. Progress of the reactions was followed by TLC (silica gel polygrams SIL G/UV 254 plates). Column chromatography was performed using Silicycle (40-60 mm) silica gel. The chemicals were purchased from commercial suppliers (Shanghai Chemical Company, China) and were used without purification prior to use.

2. Preparation of Mannich base L6 and imine L9

Mannich bases **L6** were prepared from their corresponding phenols, formaldehyde and amines according to the literature method without modifications.^[1]

Imine **L13** was prepared from 2,4-phentanedione and 2,6-dimethylbenzenamine according to the literature method without modifications.^[2]

3. General procedure for oxidative esterification reaction

A mixture of aldehyde **1** (0.5 mmol), DTBP (0.3 mL) or other peroxide (1.5 mmol), CuBr (14.4 mg, 0.1 mmol, 20 mol%) and imine **L13** (30.6 mg, 0.1 mmol, 20 mol%) in *n*-hexane (3 mL) was sealed in a Teflon septum screw-capped tube under N₂. The mixture was stirred in an oil bath at 90 °C for 5h. After cooling to room temperature, the mixture was filtered, and the filtrate was evaporated in vacuo. The residue was purified by flash column chromatography (silica gel, ethyl acetate/petroleum ether = 1:20 as an eluent) to afford the desire esters of tertiary alcohols **3**.

Table S1 Ligand survey for copper-catalyzed direct esterification of

benzaldehyde with DTPB^a

^a Reaction conditions: A mixture of benzaldehyde (**1a**, 0.5 mmol), CuBr (20 mol%), ligand (20 mol%) and DTBP (**2a**, 0.3 mL) in *n*-hexane (3 mL) was stirred at 90 °C for 5 h under N₂. ^b Yield determined by GC.

^c Isolated yield.

Table S2 Optimization of reaction conditions for the preparation of 3a in

O H	+ Oxidant –	[Cu] (20 mol%) L13 (20 mol%)		
	Children	solvent, 90 °C		
1a	2		3a	L13
Entry	[Cu]	Oxidant	Solvent	Yield ^b (%)
1		DTBP	<i>n</i> -hexane	0
2	CuI	DTBP	<i>n</i> -hexane	82
3	CuCl	DTBP	<i>n</i> -hexane	85
4	CuBr	DTBP	n-hexane	87
5	CuBr	DTBP	<i>n</i> -hexane	67 ^d
6	Cu ₂ O	DTBP	<i>n</i> -hexane	27
7	Cu(OAc) ₂	DTBP	<i>n</i> -hexane	0
8	$CuCl_2$	DTBP	<i>n</i> -hexane	78
9	$Cu(acac)_2$	DTBP	<i>n</i> -hexane	0
10	CuBr	DTBP	toluene	<5 ^c
11	CuBr	DTBP	ClCH ₂ CH ₂ Cl	$<5^{\circ}$
12	CuBr	DTBP	cyclohexane	<5 ^c
13	CuBr	DTBP	1,4-dioxane	0
14	CuBr	TBHP	<i>n</i> -hexane	$<5^{\circ}$
15	CuBr	<i>t</i> -butyl perbenzoate	<i>n</i> -hexane	36
16	CuBr	O_2	<i>n</i> -hexane	$0^{\rm e}$
17	CuBr	H_2O_2	<i>n</i> -hexane	$0^{\rm e}$
18	CuBr	$K_2S_2O_4$	<i>n</i> -hexane	0^{e}
19	CuBr	NHPI	<i>n</i> -hexane	$0^{\rm e}$
20	CuBr	DTBP	<i>n</i> -hexane	62^{f}
21	CuBr	DTBP	<i>n</i> -hexane	71 ^g

the presence of L13^a

^a Reaction conditions: A mixture of benzaldehyde (**1a**, 0.5 mmol), [Cu] (20 mol%), **L13** (20 mol%) and DTBP (**2a**, 0.3 mL) in *n*-hexane (3 mL) was stirred at 90 °C for 5 h under N₂.

^b Isolated yield.

^c Yield determined by GC.

^d 10 mol% CuBr and 10 mol% L13 were used.

^e 0.3ml *tert*-butanol were used in the reaction.

^f The reaction temperature was 70 °C.

^g 0.2 mL DTBP was used.

4 Characterization data of esters of tertiary Alcohols

Benzyl benzoate (Table 1, product **2a**)^[3]

According to the general procedure A, compound **3a** was obtained in 90% yield. Hexane: EtOAC = 20:1, $R_f = 0.4$ ¹H NMR (500 MHz, CDCl₃) $\delta = 8.12$ (d, J = 7.3 Hz, 2 H), 7.58 (t, J = 7.4 Hz, 1 H), 7.49-7.35 (m, 7 H), 5.40 (s, 2 H) ppm. GC-MS (EI, 70eV): 212.

4-Methylbenzyl 4-methylbenzoate (Table 1, 2b)^[4]

According to the general procedure A, compound **2b** was obtained in 89% yield. Hexane: EtOAC = 20:1, $R_f = 0.4$ ¹H NMR (500 MHz, CDCl₃) $\delta = 7.97$ (d, J = 8.1 Hz, 2 H), 7.35 (d, J = 7.8 Hz, 2 H), 7.26-7.20 (m, 4 H), 5.32 (s, 2 H), 2.41 (s, 3 H), 2.37 (s, 3 H) ppm. GC-MS (EI, 70eV): 240.

Tert-butyl 4-methoxybenzoate (Table 1, 3c)^[3]

According to the general procedure, compound **3c** was obtained in 95% (98.8 mg) yield. Hexane: EtOAC = 20:1, $R_f = 0.3$

¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, J = 9.0 Hz, 2H), 6.90 (d, J = 9.0 Hz, 2H), 3.85 (s, 3H), 1.59 (s, 9H)

Tert-butyl 4-ethoxybenzoate (Table 1, 3d)

`0´ C_2H_5O

According to the general procedure, compound **3d** was obtained in 95% (103.3 mg) yield. Hexane: EtOAC = 20:1, $R_f = 0.27$ ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, J = 9.0 Hz, 2H), 6.88 (d, J = 9.0 Hz, 2H), 4.08 (q, J = 7.0 Hz, 2H), 1.58 (s, 9H), 1.43 (t, J= 7.0 Hz, 3H)

Tert-butyl 3,4-dimethoxybenzoate (Table 1, **3e**)^[3]

According to the general procedure, compound **3e** was obtained in 92% (109.5 mg) yield. Hexane: EtOAC = 20:1, $R_f = 0.15$ ¹H NMP (500 MHz, CDCL) & 7.59 (dd, L = 8.4, 2.0 Hz, 1H), 7.48 (d, L = 2.0 Hz, 1H), 6.83

¹H NMR (500 MHz, CDCl₃) δ 7.59 (dd, J = 8.4, 2.0 Hz, 1H), 7.48 (d, J = 2.0 Hz, 1H), 6.83 (d, J = 8.4 Hz, 2H), 3.89 (s, 3H), 3.88 (s, 3H), 1.56 (s, 9H)

Tert-butyl 3-phenoxybenzoate (Table 1, 3f)

According to the general procedure, compound **3f** was obtained in 91% (123.0 mg) yield. Hexane: EtOAC = 20:1, $R_f = 0.4$ ¹H NMR (500 MHz, CDCl₃) δ 7.73-7.71 (m, 1H), 7.63-7.62 (m, 1H), 7.38-7.33 (m, 3H), 7.17-7.12 (m, 2H), 7.01-6.99 (m, 2H), 1.57 (s, 9H) *Tert*-butyl 4-chlorobenzoate (Table 1, **3g**)^[3]

Ĭ,

According to the general procedure, compound **3g** was obtained in 86% (91.2 mg) yield. Hexane: EtOAC = 20:1, $R_f = 0.4$ ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, J = 8.6 Hz, 2H), 7.38 (d, J = 8.6 Hz, 2H), 1.62 (s, 9H)

Tert-butyl 4-bromobenzoate (Table 1, **3h**)^[5]

According to the general procedure, compound **3h** was obtained in 89% (114.0 mg) yield. Hexane: EtOAC = 20:1, $R_f = 0.4$ ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 8.6 Hz, 2H), 7.54 (d, J = 8.6 Hz, 2H), 1.59 (s, 9H)

Tert-butyl 4-(trifluoromethyl)benzoate (Table 1, **3i**)^[3]

Jo- F_3C

According to the general procedure, compound **3i** was obtained in 76% (93.5 mg) yield. Hexane: EtOAC = 20:1, $R_f = 0.35$ ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, J = 8.6 Hz, 2H), 7.68 (d, J = 8.6 Hz, 2H), 1.62 (s, 9H) *Tert*-butyl 1-naphthoate (Table 1, **3k**)^[3]

According to the general procedure, compound **3k** was obtained in 82% (93.5 mg) yield. Hexane: EtOAC = 20:1, $R_f = 0.4$ ¹H NMR (500 MHz, CDCl₃) δ 8.85 (d, J = 8.2 Hz, 1H), 8.08 (dd, J = 7.3, 1.3 Hz, 1H), 7.97 (d, J = 8.3 Hz, 1H), 7.86 (d, J = 7.5 Hz, 1H), 7.59-7.46 (m, 3H), 1.68 (s, 9H)

Tert-butyl 2-methylbenzoate (Table 1, 3I)^[3]

According to the general procedure, compound **3** was obtained in 78% (74.9 mg) yield. Hexane: EtOAC = 20:1, $R_f = 0.4$

¹H NMR (500 MHz, CDCl₃) δ 7.82-7.81 (m, 1H), 7.37-7.34 (m, 1H), 7.23-7.20 (m, 2H), 2.57 (s, 3H), 1.60 (s, 9H)

Tert-butyl furan-2-carboxylate (Table 1, **30**)^[3]

According to the general procedure, compound **3n** was obtained in 83% (69.7 mg) yield. Hexane: EtOAC = 20:1, $R_f = 0.4$ ¹H NMR (500 MHz, CDCl₃) δ 7.54 (q, J = 0.9 Hz, 1H), 7.08 (dd, J = 3.5, 0.9 Hz, 1H), 6.47 (q, J =

1.8 Hz, 1H), 1.59 (s, 9H)

Tert-butyl thiophene-2-carboxylate (Table 1, 3p)^[3]

According to the general procedure, compound **30** was obtained in 86% (79.1 mg) yield.

Hexane: EtOAC = 20:1, $R_f = 0.4$

¹H NMR (500 MHz, CDCl₃) δ 7.72 (dd, J = 3.7, 1.3 Hz, 1H), 7.49 (dd, J = 5.0, 1.3 Hz, 1H), 7.08-7.06 (m, 1H), 1.59 (s, 9H)

2-phenylpropn-2-yl 4-methylbenzoate (Table 2, 3s)

According to the general procedure, compound **3r** was obtained in 76% (96.5 mg) yield. Colorless oil

Hexane: EtOAC = 20:1, $R_f = 0.5$

¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, J = 8.3 Hz, 2H), 7.47-7.44 (m, 2H), 7.38-7.35 (m, 2H), 7.29-7.25 (m, 3H), 2.43 (s, 3H), 1.94 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 165.2, 146.0, 143.3, 129.7 (2C), 129.0 (2C), 128.4 (2C), 127.0, 125.9 (2C), 124.4, 82.0, 28.9 (2C), 21.7 GC-MS (EI, 70eV): 254.

2-phenylpropan-2-yl 4-methoxybenzoate (Table 2, 3t)

MeO

According to the general procedure, compound **3s** was obtained in 85% (114.8 mg) yield. Colorless oil

Hexane: EtOAC = 20:1, $R_f = 0.5$

¹H NMR (500 MHz, CDCl₃) δ 8.05-8.03 (m, 2H), 7.48-7.46 (m, 2H), 7.38-7.35 (m, 2H), 7.30-7.26 (m, 1H), 6.96-6.94 (m, 2H), 3.88 (s, 3H), 1.94 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 165.0, 163.2, 146.1, 131.6 (2C), 128.4 (2C), 127.0 (2C), 124.3, 124.0, 113.6 (2C), 81.8, 55.5, 28.9 (2C); GC-MS (EI, 70eV): 270.

2-phenylpropan-2-yl 4-ethoxybenzoate (Table 2, 3u)

According to the general procedure, compound **3t** was obtained in 83% (117.9 mg) yield. Colorless oil Hexane: EtOAC = 20:1, $R_f = 0.5$ ¹H NMR (500 MHz, CDCl₃) δ 8.04-8.02 (m, 2H), 7.47-7.45 (m, 2H), 7.38-7.35 (m, 2H), 7.29-7.27 (m, 1H), 6.94-6.92 (m, 2H), 3.88 (s, 3H), 4.11 (q, J = 7.0 Hz, 2H), 1.94 (s, 6H), 1.47 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.0, 162.6, 146.1, 131.6 (2C), 128.3 (2C), 127.0 (2C), 124.3, 123.8, 114.0 (2C), 81.8, 63.7, 28.9, 14.8; GC-MS (EI, 70eV): 284.

2-phenylpropn-2-yl 4-bromobenzoate (Table 2, **3v**)

J O

According to the general procedure, compound 3u was obtained in 74% (117.7 mg) yield. Colorless oil

Hexane: EtOAC = 20:1, $R_f = 0.5$

¹H NMR (500 MHz, CDCl₃) δ 7.90-7.88 (m, 2H), 7.57-7.56 (m, 2H), 7.42-7.40 (m, 2H), 7.35-7.32 (m, 2H), 7.27-7.24 (m, 1H), 1.91 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 164.4, 145.6, 131.6 (2C), 131.1 (2C), 130.4, 128.4 (2C), 127.8, 127.2 (2C), 124.3, 82.7, 28.7 (2C) GC-MS (EI, 70eV): 318.

5. ¹H and ¹³C NMR spectra

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013

6. References

- (a) J. H. Hodgkin, J. Polym. Sci. Part A: Polym. Chem. 1986, 24, 3117; (b) M.
 Sasmita, D. Suresh, S. B. Maravanji, T. M. Joel, Tetrahedron, 2008, 64, 240; (c) K.
 Kubono, K. Yokoi, Acta. Crystallogr. C, 2007, 63, 535-537; (d) N. Ikpo, L. N.
 Saunders, J. L. Walsh, J. M. B. Smith, L. N. Dawe, F. M. Kerton, Eur. J. Inorg.
 Chem. 2011, 35, 5347
- 2 P. H. M. Budzelaar, N. N. P. Moonen, R. Gelder, J. M. M. Smits, A. W. Gal, *Eur. J. Inorg. Chem.* 2000, 753
- 3 Z. Xin, T. M. Gogsig, A. T. Lindhardt, T. Skrydstrup, Org. Lett. 2012, 14, 284
- 4 Y. Nishimoto, S. A. Babu, M. Yasuda, A. Baba, J. Org. Chem. 2008, 73, 9465
- 5 E. C. Taylor, G. S. K. Wong, J. Org. Chem. 1988, 53, 35