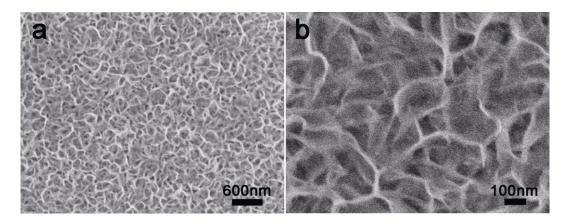
Supporting Information for:

Controllable Fabrication of Ternary ZnIn₂S₄ Nanosheet Array Film for Bulk Heterojunction Solar Cells

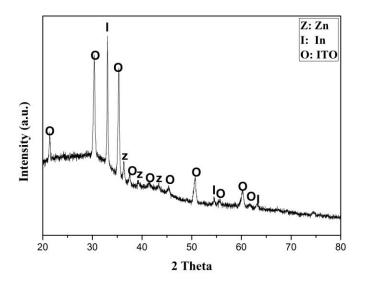
Huimin Jia^a, Weiwei He^a, Yan Lei^a, Xuewu Chen^a, Yong Xiang^b, Shu Zhang^b, Woon Ming Lau^c, Zhi Zheng^a*

^aInstitute of Surface Micro and Nano Materials, Xuchang University, Xuchang 461000, P. R. China.

^bState Key Laboratory of Electronic Thin Film & Integrated Devices, School of


Energy Science and Engineering, University of Electronic Science and Technology

of China, Sichuan 611731, P. R. China.


^cChengdu Green Energy and Green Manufacturing R&D Center, Sichuan 610207, P.

R. China.

Corresponding Authors: zhengzhi99999@gmail.com

Figure S1. SEM images of as-prepared $ZnIn_2S_4$ nanosheet film by solvothermal treatment of a 20 nm Zn/In film and 0.5 mmol S powders at 180 °C for 24 h.

Figure S2. X-ray diffraction (XRD) pattern of original zinc/indium film with thickness of 80 nm by magnetron sputtering before solvothermal treatment.

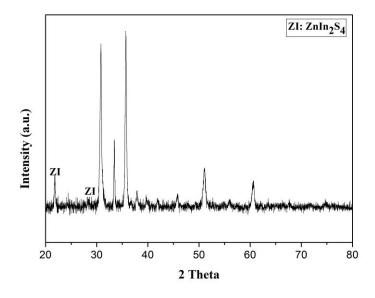
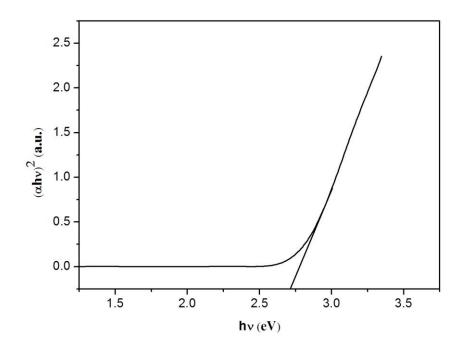



Figure S3. X-ray diffraction (XRD) pattern of the $ZnIn_2S_4$ film obtained by solvothermal treatment of 80 nm thick Zn/In bimetallic film and 0.5 mmol S powders at 180°C for12 h.

Figure S4. The corresponding $(\alpha hv)^2 vs. hv$ curve.

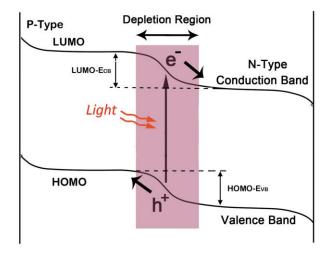


Figure S5. Schematic drawing of the donor and acceptor energy levels.