Electronic Supplementary Information

Synthesis, structural characterization and anion-, cation-, and solvent induced tuning of photophysical properties of a bimetallic Ru(II) complex: combined experimental and DFT/TDDFT investigation

Debasish Saha,^a Shyamal Das,^a Srikanta Karmakar,^a Supriya Dutta^b and Sujoy Baitalik^{*a}

^a Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700 032, India. E-mail: <u>sbaitalik@hotmail.com</u>; Fax: + 91 3324146584; Tel: + 91 33 24146666

^b Department of Chemistry, Budge Budge Institute of Technology, Kolkata 700137, India.

^{*} To whom correspondence should be addressed: E-mail: sbaitalik@hotmail.com

Tables for supporting information

Table S1 Selected calculated bond distances (Å) and angles (deg) for $[(bpy)_2Ru(H_2PyIm Phen)Ru (bpy)_2](ClO_4)_4 \cdot 4H_2O (1)$ and $[(bpy)_2Ru(H_2PyImPhen)Ru(bpy)_2](ClO_4)_4 \cdot (2)$

	1	2
gas soln	gas soln	gas soln Gas soln
Ru1-N5 2.1183 2.1136	Ru2-N1 2.1204 2.1133	Ru1-N5 2.1073 2.1104 Ru2-N1 2.1073 2.1104
Ru1-N6 2.1178 2.1117	Ru2-N2 2.1207 2.1121	Ru1-N6 2.1192 2.1129 Ru2-N2 2.1192 2.1129
Ru1-N7 2.1207 2.1121	Ru2-N3 2.1178 2.1117	Ru1-N7 2.1188 2.1141 Ru2-N3 2.1188 2.1141
Ru1-N8 2.1204 2.1133	Ru2-N4 2.1183 2.1136	Ru1-N8 2.1063 2.1113 Ru2-N4 2.1063 2.1113
Ru1-N9 2.1276 2.1194	Ru2-N16 2.1276 2.1194	Ru1-N9 2.1135 2.1180 Ru2-N16 2.1170 2.1189
Ru1-N10 2.1265 2.1202	Ru2-N17 2.1265 2.1202	Ru1-N10 2.1170 2.1189 Ru2-N17 2.1135 2.1180
Bond angles		
N5-Ru1-N6 77.54 77.66	N1-Ru2-N2 77.50 77.65	N5-Ru1-N6 77.52 77.64 N1-Ru2-N2 77.52 77.64
N5-Ru1-N7 96.87 97.38	N1-Ru2-N3 96.79 97.08	N5-Ru1-N7 99.06 97.64 N1-Ru2-N3 99.06 97.64
N5-Ru1-N8 172.24 172.94	N1-Ru2-N4 172.22 172.94	N5-Ru1-N8 175.29 173.47 N1-Ru2-N4 175.29 173.48
N5-Ru1-N9 89.04 88.05	N1-Ru2-N16 97.01 97.31	N5-Ru1-N9 87.71 88.42 N1-Ru2-N16 96.13 97.01
N5-Ru1-N10 97.64 97.16	N1-Ru2-N17 88.42 88.46	N5-Ru1-N10 96.14 97.10 N1-Ru2-N17 87.71 88.42
N6-Ru1-N7 88.27 88.86	N2-Ru2-N3 88.27 88.86	N6-Ru1-N7 89.44 89.04 N2-Ru2-N3 89.43 89.04
N6-Ru1-N8 96.79 97.08	N2-Ru2-N4 96.87 97.38	N6-Ru1-N8 99.05 97.66 N2-Ru2-N4 99.06 97.66
N6-Ru1-N9 97.25 96.64	N2-Ru2-N16 172.68 172.99	N6-Ru1-N9 95.84 96.57 N2-Ru2-N16 172.04 172.88
N6-Ru1-N10 173.39 172.96	N2-Ru2-N17 96.86 96.59	N6-Ru1-N10 172.04 172.88 N2-Ru2-N17 95.84 96.57
N7-Ru1-N8 77.50 77.65	N3-Ru2-N4 77.54 77.66	N7-Ru1-N8 77.55 77.62 N3-Ru2-N4 77.55 77.62
N7-Ru1-N9 172.68 172.99	N3-Ru2-N16 97.25 96.64	N7-Ru1-N9 172.20 172.52 N3-Ru2-N16 96.38 96.37
N7-Ru1-N10 96.86 96.59	N3-Ru2-N17 173.39 172.96	N7-Ru1-N10 96.37 96.37 N3-Ru2-N17 172.21 172.52
N8-Ru1-N9 97.01 97.31	N4-Ru2-N16 89.04 88.055	N8-Ru1-N9 95.90 96.66 N4-Ru2-N16 87.54 88.05
N8-Ru1-N10 88.41 88.46	N4-Ru2-N17 97.64 97.16	N8-Ru1-N10 87.54 88.05 N4-Ru2-N17 95.90 96.66
N9-Ru1-N10 77.10 78.28	N16-Ru2-N17 77.10 78.28	N9-Ru1-N10 78.95 78.47 N16-Ru2-N17 78.95 78.47

1.Zn						
Ru1-N5	2.1137		Ru2-N1	2.1149		
Ru1-N6	2.1124		Ru2-N2	2.1120		
Ru1-N7	2.1120		Ru2-N3	2.1123		
Ru1-N8	2.1149		Ru2-N4	2.1137		
Ru1-N9	2.1170		Ru2-N16	2.1197		
Ru1-N10	2.1197		Ru2-N17	2.1170		
Zn-N13	2.1660		Zn-N12	2.3461		
Zn-N15	2.3471					
N5-Ru1-N6	77.66		N1-Ru2-N2	77.66		
N5-Ru1-N7	96.97		N1-Ru2-N3	97.01		
N5-Ru1-N8	172.60		N1-Ru2-N4	172.60		
N5-Ru1-N9	88.61		N1-Ru2-N16	88.80		
N5-Ru1-N10	96.95		N1-Ru2-N17	97.16		
N6-Ru1-N7	88.87		N2-Ru2-N3	88.87		
N6-Ru1-N8	96.99		N2-Ru2-N4	96.97		
N6-Ru1-N9	96.76		N2-Ru2-N16	96.70		
N6-Ru1-N10	172.72		N2-Ru2-N17	172.81		
N7-Ru1-N8	77.66		N3-Ru2-N4	77.66		
N7-Ru1-N9	172.82		N3-Ru2-N16	172.72		
N7-Ru1-N10	96.70		N3-Ru2-N17	96.77		
N8-Ru1-N9	97.16		N4-Ru2-N16	96.94		
N8-Ru1-N10	88.80		N4-Ru2-N17	88.62		
N9-Ru1-N10	78.07		N16-Ru2-N17	78.07		
N12-Zn-N13	74.39		N13-Zn-N15	74.37		
			N12-Zn-N15	148.76		

Table S2 Selected calculated bond distances (Å) and angles (deg) for $1 \cdot Zn$

MO	Energy, eV	(%) Composition			
	3	Ru ^{II}	Zn ^{II}	Ligand	bpy
HOMO-3	-6.634	79.62	0.02	10.57	9.79
HOMO-2	-6.623	77.23	0.01	13.26	9.49
HOMO-1	-6.491	84.82	0.00	5.32	9.85
HOMO	-6.491	84.81	0.00	5.34	9.85
LUMO	-3.232	0.33	2.24	93.13	4.30
LUMO+1	-3.116	1.51	0.02	92.80	5.67
LUMO+2	-2.998	4.57	1.09	78.81	15.52
LUMO+3	-2.967	3.29	0.17	79.47	17.07

CH_2Cl_2 : DMF				$H_2O: CH_3CN$					
CH_2Cl_2	τ	$\phi \times 10^{-1}$	$K_r \times 10^5$	$K_{nr} \times 10^6$	H_2O	τ	$\phi \times 10^{-1}$	$K_r \times 10^5$	$K_{nr} \times 10^6$
: DMF	[ns]	·			: CH ₃ CN	[ns]	· .		
10:0	410	1.10	2.68	2.17	10:0	500	1.14	2.28	1.77
9:1	397	1.08	2.72	2.25	9:1	437	0.95	2.17	2.07
8:2	344	0.98	2.85	2.62	8:2	352	0.92	2.61	2.58
7:3	323	0.88	2.72	2.82	7:3	240	0.71	2.96	3.87
6:4	293	0.74	2.53	3.16	6:4	225	0.59	2.62	4.18
5:5	280	0.69	2.46	3.33	5:5	205	0.55	2.68	4.61
4:6	264	0.62	2.35	3.55	4:6	190	0.50	2.63	5.00
3:7	237	0.57	2.41	3.98	3:7	181	0.45	2.49	5.28
2:8	225	0.53	2.36	4.21	2:8	171	0.43	2.51	5.60
1:9	208	0.49	2.40	4.66	1:9	165	0.41	2.48	5.81
0:10	202	0.42	2.09	4.74	0:10	163	0.40	2.42	5.89

Table S4 Photophysical data for 1 in binary solvent mixture

Fig. S1 Optimized geometries and labeling schemes of $[(bpy)_2Ru(H_2PyImPhen)Ru(bpy)_2](ClO_4)_4 \cdot 4H_2O$ (1) and $[(bpy)_2Ru(PyImPhen)Ru(bpy)_2](ClO_4)_2$ (2) in gas (a) and solution phase (b).

7

Fig. S2 Optimized geometries and labeling schemes of 1.Zn in solution phase.

Fig. S3 Schematic drawings of the selective frontier molecular orbitals for 1·Zn in solution phase.

Fig. S4 ¹H spectra of $[(bpy)_2Ru(H_2PyImPhen)Ru(bpy)_2](ClO_4)_4 \cdot 4H_2O$ (1) (below) and $[(bpy)_2Ru(PyImPhen)Ru(bpy)_2](ClO_4)_2$ (2) (above) in DMSO-*d*₆.

Fig. S5 UV-vis spectra of $[(bpy)_2Ru(H_2PyImPhen)Ru(bpy)_2](ClO_4)_4 \cdot 4H_2O$ (1) in different solvents.

Fig. S6 Changes in UV-vis spectra of $[(bpy)_2Ru(H_2PyImPhen)Ru(bpy)_2](ClO_4)_4 \cdot 4H_2O$ (1) on incremental addition of DMF in CH₂Cl₂.

Fig. S7 Luminescence spectra of $[(bpy)_2Ru(H_2PyImPhen)Ru(bpy)_2]$ (ClO₄)₄·4H₂O (1) in presence (red line) and in absence (black line) of F⁻ at 77 K in 4:1 ethanol–methanol glass.

Fig. S8 Changes in UV-vis (a) and photoluminescence (b) spectra of $[(bpy)_2Ru(H_2PyIm Phen)Ru(bpy)_2](ClO_4)_4 \cdot 4H_2O$ (1) in acetonitrile upon addition of AcO⁻ ion. Inset shows the fit of the experimental emission data to a 1:1 binding profile.

Fig. S9 Changes in UV-vis (a) and photoluminescence (b) spectra of $[(bpy)_2Ru(H_2PyImPhen)Ru(bpy)_2](ClO_4)_4 \cdot 4H_2O(1)$ in acetonitrile upon addition of OH⁻ ion. The inset shows the change of absorption and emission intensity as a function of the equivalent of OH⁻ ion added.

Fig. S10 Changes in UV-vis (a) and photoluminescence (b) spectra of $[(bpy)_2Ru(H_2Py ImPhen)Ru(bpy)_2](ClO_4)_4 \cdot 4H_2O$ (1) in acetonitrile upon addition of different cations as perchlorate salts.

Fig. S11 Changes in UV-vis spectra of $[(bpy)_2Ru(H_2PyImPhen)Ru(bpy)_2](ClO_4)_4 \cdot 4H_2O$ (1) in acetonitrile upon addition of Cd^{2+} (a) and Hg^{2+} (b). The inset shows the change of absorption and emission intensity as a function of the equivalent of Cd^{2+} and Hg^{2+} ions added.

Fig. S12 Changes in UV-vis (a) and photoluminescence (b) spectra of $[(bpy)_2Ru(H_2PyImPhen)Ru(bpy)_2](ClO_4)_4 \cdot 4H_2O$ (1) in acetonitrile upon addition of $Mn(ClO_4)_2$. The inset shows the change of absorption and emission intensity as a function of the equivalent of Mn^{2+} ions added.

Fig. S13 Changes in time-resolved decay profiles of $[(bpy)_2Ru(H_2PyImPhen)Ru(bpy)_2](ClO_4)_4 \cdot 4H_2O(1)$ in acetonitrile as function of the incremental addition of Cu^{2+} .

Fig. S14 Photoluminescence spectra of $[(bpy)_2Ru(H_2PyImPhen)Ru(bpy)_2](ClO_4)_4 \cdot 4H_2O(1)$ in absence (black line) and in presence of Zn^{2+} (red line) and Cu^{2+} (green) ions in ethanolmethanol (4:1) glass at 77 K.

Fig. S15 Changes in UV-vis (a,c,e) and photoluminescence (b,d,f) spectra of **1** upon sequential incremental addition of Zn^{2+} and F^{-} ions in acetonitrile.