Supporting Information

A Water Soluble Fluorescent Sensor for the Reversible Detection of Tin (IV) Ion and Phosphate Anion

Jing Liu,^{*a*} Kai Wu,^{*a*} Xin Li,^{*b*} Yifeng Han^{*a*} and Min Xia^{*a*}

^a Department of Chemistry, The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, China.

^b ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.

hanyf@zstu.edu.cn and lixin81@zju.edu.cn

Contents

Determination of quantum yields S2
Other Photophysical properties of DQS ······S2
Determination of the binding constant S6
The proposal structure of DQS -Sn ⁴⁺ complex·····S7
The characterization data of all compounds
References

Determination of quantum yields

The quantum yield of **DQS** (Φ_0) and **DQS**-Sn⁴⁺ (Φ_1 , in the present of 5 equiv of Sn⁴⁺ ions) were determined according to the literature.¹

$$\Phi_{Sample} = \frac{\Phi_{QS} \cdot A_{QS} \cdot F_{Sample} \cdot \lambda_{exQS} \cdot \eta_{Sample}^{2}}{A_{Sample} \cdot F_{QS} \cdot \lambda_{exSample} \cdot \eta_{QS}^{2}}$$

Where Φ is quantum yield; A is absorbance at the excitation wavelength; F is integrated area under the corrected emission spectra; λ_{ex} is the excitation wavelength; η is the refractive index of the solution; the Sample and QS refer to the sample and the standard, respectively. We chose quinine sulfate in 0.1N H₂SO₄ as standard, which has the quantum yield of 0.546.²

Other Photophysical properties of DQS

Figure S1. Absorption spectra of **DQS** (10 μ M) in water solution in the present of Sn⁴⁺, Fe³⁺, and Cr³⁺ (1 equiv), respectively.

Figure S2. Job's plot of sensor **DQS**, the total concentration of the sensor and Sn^{4+} is 25.0 μ M.

Figure S3. Effect of the pH on the fluorescence emission of DQS (5.0 μ M).

Figure S4. Effect of the pH on the fluorescence emission of **DQS**-Sn⁴⁺ complex (5.0 μ M of **DQS** in the prescent of 20 equiv of Sn⁴⁺).

Figure S5. Fluorescence spectra of **DQS** (5 μ M) in water in the presence of different concentrations of Fe³⁺ (0-90 μ M) (λ_{ex} = 360 nm). Inset: fluorescence intensity changes as a function of Fe³⁺ concentration.

Figure S6. Job's plot of sensor **DQS**, the total concentration of the sensor and Fe³⁺ is 25.0 μ M.

Figure S7. Fluorescence spectra of **DQS** (5 μ M) in water in the presence of different concentrations of Cr³⁺ (0-100 μ M) ($\lambda_{ex} = 360$ nm). Inset: fluorescence intensity changes as a function of Cr³⁺ concentration.

Figure S8. Job's plot of sensor **DQS**, the total concentration of the sensor and Cr^{3+} is 25.0 μ M.

Determination of the binding constant

The apparent binding constant (K_S) of **DQS** with Sn⁴⁺ was determined using the nonlinear least-squares analysis base on a 1:1 complex expression:³

$$\frac{F}{F_0} = 1 + \left(\frac{F_{\text{max}}}{2F_0} - \frac{1}{2}\right) \left[1 + \frac{C_M}{C_L} + \frac{1}{K_s C_L} - \sqrt{\left(1 + \frac{C_M}{C_L} + \frac{1}{K_s C_L}\right)^2 - 4\frac{C_M}{C_L}}\right]$$

Where F_0 or F is the fluorescence emission intensities in the absence or presence of Sn^{4+} ions, C_M and C_L are the concentrations of Sn^{4+} and **DQS**, and K_S is the stability constant.

Figure S9. A proposed structure of **DQS**-Sn⁴⁺ complex.

The characterization data of all compounds

¹H NMR of compound **1**

¹H NMR of compound **2** (**DQS**)

¹³C NMR of compound **2** (**DQS**)

HRMS of compound 2 (DQS)

References

- (1) Velapoldi, R. A.; Tønnesen, H.; H. J. Fluoresc. 2004, 14, 465-472.
- (2) Eaton, D. F. Pure Appl. Chem. 1988, 60, 1107-1114.
- (3) Valeur, B. Molecular Fluorescence Principle and Applications; Wiley-VCH Verlag GmbH: New York, 2001.