Electronic Supplementary Information (ESI) for:

Porphyrin with β -acetylene-bridged functional groups for efficient dyesensitized solar cells

Tomoaki Sakurada, Yonbon Arai* and Hiroshi Segawa*

Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8904, Japan

Experimental Section

Materials and General procedures

All starting materials and solvents were purchased from Wako Pure Chemicals, Kanto Chemicals, Tokyo Chemical Industry, or Merck, and used without further purification. Column chromatography was performed with Silica gel 60 N (spherical, neutral, 40–50 μ m Kanto Chemicals). ¹H NMR spectra were recorded on a Bruker DRX 600. The chemical shifts were reported in δ scale (ppm) using the residual solvent proton as the internal standard (CHCl₃: 7.26 ppm, THF-d8: 3.58 ppm). ESI-Mass spectra were obtained on a Shimadzu LCMS-IT-TOF, using MeOH as the solvent.

Synthesis

Zinc 2-trimethylsilylethynyl-5,10,15,20-tetraphenylporphyrin (1) and zinc 2,3bis(trimethylsilylethynyl)-5,10,15,20-tetraphenylporphyrin (2) were prepared via crosscoupling reactions following reported procedures.^{S1}

Zinc 2-trimethylsilylethynyl-5,10,15,20-tetraphenylporphyrin (1). ¹NMR (600 MHz, CDCl₃): δ 8.90 (s 1H), 8.85 (s, 2H), 8.79 (s 2H) 8.75 (d, *J* = 4.8 Hz, 1H), 8.65 (d, *J* = 4.7 Hz, 1H), 8.13–8.20 (m, 8H), 7.74–7.96 (m, 12H), 0.22 (s, 9H). ESI-MS: *m/z* calcd for C₄₉H₃₆N₄SiZn: 772.20, found 773.4 [M+H]⁺. λ_{max} /nm (in CH₂Cl₂): 431, 557, 594.

Zinc 2,3-bis(trimethylsilylethynyl)-5,10,15,20-tetraphenylporphyrin (2). ¹NMR (600

MHz, CDCl₃): δ 8.86 (s 2H), 8.80 (d, J = 4.6 Hz, 2H), 8.65 (d, J = 4.6 Hz, 2H), 8.13–8.20 (m, 8H), 7.74–7.96 (m, 12H), 0.21 (s, 18H). ESI-MS: *m/z* calcd for C₅₅H₃₆N₄O₂Zn: 868.21 found 869.3 [M+H]⁺. λ_{max}/nm (in CH₂Cl₂): 437, 563, 604.

Zinc 2-(4'-ethoxycarboxyphenylethynyl)-5,10,15,20-tetraphenylporphyrin (3). To a solution of 1 (50 mg, 0.064 mmol) in THF (10 mL), TBAF (1 mL, 1 M in THF) was added and the solution was stirred at room temperature for 0.5 hour under Ar. After completion of the reaction, the solvent was removed under reduced pressure. The residue was dissolved in CH₂Cl₂ and washed with water twice. The organic solution was washed with brine, dried (Na₂SO₄), and evaporated. The resulting residue and ethyl 4-iodobenzoate (88 mg, 0.32 mmol) were dissolved in THF (5 mL) and Et₃N (1 mL) under Ar, and then Pd₂(dba)₃ (14 mg, 0.016 mmol) and AsPh₃ (48 mg 0.16 mmol) were added to the mixture. The solution was warmed up to 70°C and stirred for 12 h. After completion of the reaction, the solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography using CH_2Cl_2 as eluent. Product (37 mg) was obtained in 68% yield as a purple solid by recrystallization from CH₂Cl₂/MeOH. ¹NMR (600 MHz, THF d⁸): δ 9.01 (s 1H), 8.80 (s, 2H), 8.79 (s 2H) 8.75 (d, J = 4.6 Hz, 1H), 8.65 (d, J = 4.6 Hz, 1H), 8.32 (d, J = 8.3 Hz, 2H), 8.13–8.20 (m, 8H), 7.74–7.96 (m, 12H), 7.20 (d, *J* = 8.2 Hz, 2H), 4.23 (m, 2H), 1.32 (t, 3H). ESI-MS: m/z calcd for C₅₅H₃₆N₄O₂Zn: 848.21, found 849.3 [M+H]⁺. λ_{max}/nm (in CH₂Cl₂): 431, 557, 594.

P-PhCOOH. A mixture of **3** (20 mg) and NaOH (1M, 1mL) in THF (3 mL) and MeOH (1 mL) was refluxed for 2 h. After completion of the reaction, deionized water (100 mL) was added and the mixture was neutralized with HCl (0.1 M, 10 mL). Precipitated product was obtained in 90% yield as a purple solid by filtration after drying in vacuo. ¹NMR (600 MHz, CDCl₃): d 9.10 (s 1H), 8.80 (s 2H), 8.77 (s 2H), 8.76 (d, J = 4.6 Hz, 1H), 8.65 (d, J = 4.6 Hz, 1H), 8.40 (d, J = 8.3 Hz, 2H), 8.15-8.24 (m, 8H), 7.68–7.80 (m, 12H), 7.45 (d, J = 8.6 Hz, 2H). HRESI-MS: m/z calcd for C₅₃H₃₂N₄O₂Zn 819.1744 [M-H]⁻, found 819.1684 [M-H]⁻.

Methyl 4-bromo-2,3,5,6-tetrafluorobenzoate (4). To a solution of 4-bromo-2,3,5,6-tetrafluorobenzoate (3 g, 11 mmol) in dry toluene (120 mL), SOCl₂ (3.2 mL, 44 mmol) was slowly added. The mixture was stirred for 5 h, and then 8 mL of MeOH was added. After 15 min, the solvent was removed under reduced pressure, the residue was dissolved in ethylacetate and washed with NaHCO₃aq. The organic solvent was dried with Na₂SO₄ and removed by reduced pressure. The residue was purified by silica column chromatography using CH₂Cl₂ as eluent. The product (2.6 g) was obtained as white solid in 82% yield. ¹NMR (600 MHz, CDCl₃): δ = 3.98 (3H, s). ESI-MS: *m/z* calcd for C₈H₃BrF₄O₂ 285.93, found 286.9 [M+H]⁺.

Zinc 2-(2',3',5',6'-tetrafluoro-4-methoxycarboxyphenylethynyl)-5,10,15,20tetraphenylporphyrin (5). To a solution of 1 (50 mg, 0.064 mmol) in THF (10 mL), TBAF (1 mL, 1 M in THF) was added and the solution was stirred at room temperature for 0.5 hour under Ar. After completion of the reaction, the solvent was removed under reduced pressure. The residue was dissolved in CH_2Cl_2 and washed with water twice. The organic solution was washed with brine, dried (Na₂SO₄), and evaporated. The resulting residue and 4 (91 mg, 0.32 mmol) were dissolved in THF (5 mL) and Et₃N (1 mL), and degassed by bubbling Ar for 10 min. To the mixture, $Pd_2(dba)_3$ (14 mg, 0.016 mmol) and AsPh₃ (18 mg 0.16 mmol) were added. The solution was removed under reduced pressure, and the residue was purified by silica column chromatography using CH_2Cl_2 as eluent. Product (42 mg) was obtained in 80% yield as a purple solid by recrystallization from $CH_2Cl_2/MeOH$. ¹NMR (600 MHz, CDCl₃): δ

8.95 (s 1H), 8.80 (s, 2H), 8.74 (d, J = 4.7 Hz, 2H), 8.69 (d, J = 4.8 Hz, 2H) 8.10–8.25 (m, 8H), 7.54–7.76 (m, 12H), 4.32 (s, 3H). ESI-MS: *m/z* calcd for C₅₄H₃₀F₄N₄O₂Zn 906.16, found 907.2 [M+H]⁺. λ_{max}/nm (in CH₂Cl₂): 430, 558, 593.

P-FPhCOOH. P-FPhCOOH was synthesized by hydrolysis of **5** following the same procedure as that of **P-PhCOOH** (88% yield, a purple solid). ¹NMR (600 MHz, CDCl₃): δ 9.01 (s 1H), 8.76 (s, 2H), 8.74 (d, *J* = 4.6 Hz, 2H), 8.67 (d, *J* = 4.8 Hz, 2H) 8.10–8.25 (m, 8H), 7.54–7.76 (m, 12H). HRESI-MS: *m/z* calcd for C₅₃H₂₈F₄N₄O₂Zn [M+H]⁺ 893.1513, found 893.1503 [M+H]⁺.

Zinc 2-(5'-formylthienyl-2'-ethynyl)-5,10,15,20-tetraphenylporphyrin (6). To a solution of 1 (50 mg, 0.064 mmol) in THF (10 mL), TBAF (1 M in THF, 1 mL) was added and the mixture was stirred at room temperature for 0.5 hour under Ar. After completion of the reaction, the solvent was removed under reduced pressure. The residue was dissolved in CH₂Cl₂ and washed with water twice. The organic solution was washed with brine, dried (Na₂SO₄), and evaporated. The resulting residue and 2-bromo-5-formylthiophene (54 mg, 0.32 mmol) were dissolved in THF (5 mL) and Et₃N (1 mL) under Ar, and then Pd₂(dba)₃ (14 mg, 0.016 mmol) and AsPh₃ (48 mg 0.32 mmol) were added to the mixture. The solution was warmed up to 70°C and stirred for 4 h. After completion of the reaction, the solvent was removed under reduced pressure, and the residue was purified by silica column chromatography using CH₂Cl₂ as eluent. Product (35 mg) was obtained in 67% yield as a purple solid by recrystallization from CH₂Cl₂/MeOH. ¹NMR (600 MHz, CDCl₃): δ 9.20 (s, 1H), 8.90 (s, 2H), 8.87 (d, J = 4.4 Hz, 2H), 8.78 (d, J = 4.4 Hz, 2H), 8.67 (d, J = 5.3 Hz, 1H), 8.10–19 (m, 8H), 7.70–7.84 (m, 12H), 7.67 (d, J = 5.3 Hz, 1H). ESI-MS: m/z calcd for $C_{51}H_{30}N_4OSZn$: 810.14, found 811.2 [M+H]⁺. λ_{max}/nm (in CH₂Cl₂): 435, 477(sh), 568, 608. P-ThCNCOOH. A solution of 6 (35 mg) and cyanoacetic acid (18 mg, 5 eq) in a mixture of piperidine (0.2 mL) and CHCl₃ (10 mL) was heated under reflux in the atmosphere of Ar for

2 h. After completion of the reaction, the solvent was removed under reduced pressure, and the residue was purified by silica column chromatography using CH₂Cl₂/MeOH (9/1) as eluent. Product (11 mg) was obtained in 27% yield as a purple solid. ¹NMR (600 MHz, CDCl₃): d 8.88-8.90 (m, 3H), 8.78–8.86 (m, 4H), 8.77 (s, 1H), 8.18–8.22 (m, 8H), 7.92 (s, 1H), 7.70–7.81 (m, 12H), 7.67 (s, 1H). HRESI-MS: *m/z* calcd for C₅₄H₃₁N₅O₂SZn [M+H]⁺ 876.0694, found 876.0688 [M+H]⁺.

P-Py

P-Py. To a solution of **1** (50 mg, 0.064 mmol) in THF (10 mL), TBAF (1 M in THF, 1 mL) was added and the mixture was stirred at room temperature for 0.5 hour under Ar. After completion of the reaction, the solvent was removed under reduced pressure. The residue was dissolved in CH₂Cl₂ and washed with water twice. The organic solution was washed with brine, dried (Na₂SO₄), and evaporated. The resulting residue and 4-iodopyridine (66 mg, 0.32 mmol) were dissolver in THF (5 mL) and Et₃N (1 mL) under Ar, and then Pd₂(dba)₃ (14 mg, 0.016 mmol) and AsPh₃ (48 mg 0.16 mmol) were added to the mixture. The solution was warmed up to 70°C and stirred for 12 h. After completion of the reaction, the solvent was removed under reduced pressure, and the residue was purified by silica column chromatography using CH₂Cl₂ as eluent. Product (40 mg) was obtained as a purple solid in 79 % yield by recrystallization from CH₂Cl₂/MeOH. ¹NMR (600 MHz, CDCl₃): δ 8.97 (s, 1H), 8.81 (s, 2H), 8.79 (d, *J* = 4.6 Hz, 2H), 8.65 (d, *J* = 4.6 Hz, 2H), 8.31 (d, *J* = 5.1 Hz, 2H), 8.16–8.22 (m, 8H), 7.76–7.88 (m, 12H), 7.17 (d, *J* = 5.5 Hz, 2H). HRESI-MS: *m/z* calcd for

Zinc 2,3-bis(4'-ethoxycarboxyphenylethynyl)-5,10,15,20-tetraphenylporphyrin (7). To a solution of 2 (50 mg, 0.057 mmol) in THF (10 mL), TBAF (1 mL, 1 M in THF) was added

and the solution was stirred at room temperature for 0.5 hour under Ar. After completion of the reaction, the solvent was removed under reduced pressure. The residue was dissolved in CH₂Cl₂ and washed with water twice. The organic solution was washed with brine, dried (Na₂SO₄), and evaporated. The resulting residue and ethyl 4-iodobenzoate (58 mg, 0.28 mmol) were dissolved in THF (5 mL) and Et₃N (1 mL) under Ar, and then Pd₂(dba)₃ (10 mg, 0.011 mmol) and AsPh₃ (34 mg 0.11 mmol) were added to the mixture. The solution was warmed up to 70°C and stirred for 12 h. After completion of the reaction, the solvent was removed under reduced pressure, and the residue was purified by silica column chromatography using CH₂Cl₂ as eluent. Product (37 mg) was obtained in 72% yield as green solid by recrystallization from CH₂Cl₂/MeOH. ¹NMR (600 MHz, CDCl₃): δ 8.86 (s, 2H), 8.84 (d, *J* = 4.7 Hz, 2H), 8.80 (d, *J* = 4.6 Hz, 2H), 8.15 (d, *J* = 7.2 Hz, 4H), 8.13 (d, *J* = 7.2 Hz, 4H), 7.73–7.79 (m, 8H), 7.52–7.61 (m, 12H), 4.23 (m, 4H), 1.32 (t, 6H). ESI-MS: *m/z* calcd for C₆₆H₄₄N₄O₄Zn: 1020.27, found 1021.3 [M+H]⁺. λ_{max} /nm (in CH₂Cl₂): 447, 566, 609.

P-(PhCOOH)2. A mixture of 7 (20 mg) and NaOH (1M, 1 mL) in THF (3 mL) and MeOH (1 mL) was refluxed for 2 h. After completion of the reaction, deionized water (100 mL) was added and the mixture was neutralized with HCl (0.1 M, 10 mL). Precipitated product (16 mg) was obtained as a green solid in 85% yield after filtration and drying in vacuo. ¹NMR (600 MHz, THF d⁸): δ 8.90 (s, 2H), 8.80 (d, *J* = 4.7 Hz, 2H), 8.74 (d, *J* = 4.6 Hz, 2H), 8.10 (d, *J* = 7.2 Hz, 4H), 8.08 (d, *J* = 7.2 Hz, 4H), 7.70–7.75 (m, 8H), 7.51–7.58 (m, 12H). HRESI-MS: *m/z* calcd for C₆₂H₃₆N₄O₄Zn 963.1955 [M–H]⁻, found 963.1932 [M–H]⁻.

Spectroscopic Measurements

UV-vis absorption measurements were performed using a V-570 UV-vis spectrophotometer (Jasco). Steady-state fluorescence spectra were recorded using 1 cm path length quartz cell on a RF-503A spectrophotometer (Shimadzu).

Electrochemical Measurements.

Electrochemical measurements were performed by the differential pulse voltammetry (DPV) method on a BAS100 electrochemical analyzer. Voltammograms were recorded under argon flow using 0.1 M n-Bu₄NPF₆ as the supporting electrolyte. Two compartment cells connected by a salt bridge was employed, where a porphyrin in dehydrated THF, a platinum disk (BAS) working electrode and a Pt wire counter electrode were put in the one cell, and a saturated calomel (SCE) reference electrode was put in the other cell. Ferrocene/ferrocenium (0.56 V vs SCE)^{S2} was used as the external potentiometric standard.

Density functional theory (DFT) calculations

Geometry optimization and electronic structure calculations of the porphyrins were performed at the B3LYP/6-31G(d)* level of theory using the Gaussian 09 program package.^{S3}

Device Fabrication and Photovoltaic Measurements

DSSCs were constructed by assembling a porphyrin-adsorbed TiO₂ film and a Pt counter electrode with a spacer, where an electrolyte was injected into the gap of the electrodes. For the counter electrode, commercially available Pt coated FTO plate (Geomatec Co., Ltd) was used and two holes were drilled for electrolyte injection. For the spacer, a 30 μ m plastic film (Himilan, DuPont) was used. TiO₂ films were prepared by repeatedly screen printing TiO₂ pastes (Solaronix) with mean particle sizes of 13 nm or 400 nm onto F-doped SnO₂ (FTO, Nippon Sheet Glass) substrates. After the printing, the films were calcined at 500 °C for 30 min, followed by immersion in TiCl₄ solution at 70 °C for 30 min and re-calcination. All TiO₂ films composed of a ~6 μ m transparent layer (13 nm) and a ~4 μ m scattering layer (400 nm). Dye immersion of the TiO₂ films was conducted in ~0.2 mM porhyrins (with deoxycholic acid) in THF at 30°C for 0.5 h. The films were rinsed with the immersing solvent before use. For the electrolyte, 0.1 M LiI, 0.6 M 1,2-dimethyl-3-propylimidazolium iodide and 0.025 M I₂ and 0.5 M 4-*tert*-butyl pyridine in acetonitrile were used. The active area of the cells was 0.16 cm².

The current–voltage characteristics of sample cells were measured under AM 1.5 G illumination with a solar simulator (CEP-25TF, Bunkoukeiki Co., Ltd). The light intensity was calibrated by a standard silicon cell (BS-520 S/N 235, Bunkoukeiki Co., Ltd). Data were collected by a source meter (Keithley 2400). The power conversion efficiency (η) was obtained according to the equation $\eta = J_{sc} \times V_{oc} \times FF/P_{in}$, where J_{sc} is the short-circuit photocurrent density, V_{oc} is the open-circuit voltage, *ff* is the fill factor and P_{in} is the incident radiation power. The incident photon-to-current conversion efficiency (IPCE) spectra were measured by an IPCE measurement system (SM-250E, Bunkoukeiki Co., Ltd). A standard silicon solar cell (SiPD S1337-1010BQ, Bunkoukeiki Co., Ltd) was used as a reference.

Figure S1. Structures and energies of molecular orbitals obtained by DFT calculations with B3LYP/6-31G(d)*.

Figure S2. Steady-state fluorescence spectra of the porphyrins in THF. The excitations were performed at the Soret bands, where the wavelengths were chosen to irradiate identical absorbance.

Figure S3. Differential pulse voltammograms of the porphyrins in THF with 0.1 M n-Bu₄NPF₆ as the supporting electrolyte.

Figure S4. IPCE spectra of the porphyrin-sensitized solar cells at various ratios of DCA to porphyrin.

Figure S5. UV-vis spectra of **P-(PhCOOH)2** in acetonitrile (dotted line) and on TiO_2 with (dashed line) or without (solid line) addition of DCA in acetonitrile.

Figure S6. UV-vis absorption spectra of the porphyrins adsorbed on a transparent TiO_2 film with a thickness of ~4 µm. The optimized ratios of DCA were used for dye adsorption. In the DSSCs, most photons with energies corresponding to the Soret bands are mostly harvested due to the presence of a scattering layer.

Figure S7. Photocurrent-voltage curves of the porphyrin-sensitized solar cells at the optimized DCA conditions under AM 1.5 illumination (100 mW cm⁻²).

Figure S8. Time courses of absorbance of dissolved porphyrins from porphyrin-adsorbed TiO_2 films in THF with 0.01 M NaOH. 1 cm path length optical cell was used, where the TiO_2 films were put off the probe light pathway. The optimized ratios of DCA were used for dye adsorption. Without DCA, a similar tendency was observed.

Additional references

S1. M. Nath, J. C. Huffman and J. M. Zaleski, Chem. Commun. 2003, 858.

S2. N. G. Connelly and W. E. Geiger, Chem. Rev. 1996, 96, 877.

S3. M. J. T. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 09, A.02, 2009.