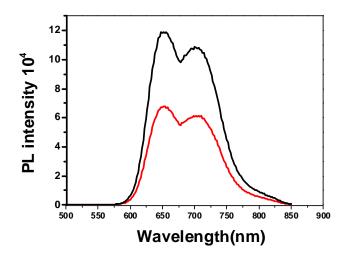

Supporting Information

for RSC Advances


Effect of the Molecular Weight of Poly(3-hexylthiophene) on the Performance of Solid-State Dye-sensitized Solar Cells

Yibo Zhang, Kun Cao, Xiaoguang Zhu, Xian Li, Xianfeng Qiao, Guoli Tu,* Bingyan Zhang, Dekang Huang, Yan Shen,* Mingkui Wang*

Cyclic voltammetry (CV) measurements were performed with a CHI 660 electrochemical workstation. The samples used for analysis were the same as those for UV-vis measurements. Tetrabutylammonium hexafluorophosphate (TBAPF₆, 0.1 M) in acetonitrile was used as the supporting electrolyte. FTO substrate, nonaqueous Ag/AgNO₃ electrode, and glassy carbon electrode were used as the working, reference, and counter electrodes, respectively. The scan rate was 0.1 V s⁻¹. Ferrocene/ferrocenium (Fc/Fc⁺) couple was used as the internal reference, and all the potentials were calibrated with Fc/Fc⁺. The highest occupied molecular orbital (HOMO) energy level is calculated based on the following equation: E_{HOMO} =-4.80- E_{ox} (onset potential vs. Fc/Fc⁺) (eV). The lowest un-occupied molecular orbital (LUMO) energy level is estimated by the equation: E_{LUMO} = E_{HOMO} - E_{g} .

Figure S1 Cyclic voltammetry (CV) measurement of P3HT of MW=10kDa a), MW=30kDa b) and MW=60kDa c) on the glassy carbon electrodes. 0.1 M TBAPF₆ in acetonitrile was used as supporting electrolyte. Nonaqueous Ag/AgNO₃ electrode, and platinum wire were used as the reference, and counter electrodes, respectively. The scan rate was 0.1 V s⁻¹. Ferrocene/ ferrocinium (Fc/Fc⁺) couple was used as the internal reference. The HOMO energy levels for P3HT with different molecular weights were evaluated to be ~-5.02, -4.99, -5.22 eV (vs. vacuum), respectively.

Figure S2 Photoluminescence spectra of the $TiO_2/P3HT$ film (black line) and $TiO_2/Z907Na/P3HT$ film (red line). Excitation wavelength was 500 nm.