Electronic Supporting Information

Ratiometric spiropyran-based fluorescent pH probe

Qi-Hua You,^a Li Fan,^b Wing-Hong Chan,^{*a} Albert W. M. Lee,^a Shaomin Shuang^b

^aDepartment of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China. Fax: +852-3411-7348; Tel: +852-3411-7076; E-mail: whchan@life.hkbu.edu.hk ^bCenter of Environmental Science and Engineering Research, School of Chemistry and Chemical Engineering, Shanxi

University, Taiyuan 030006, P. R. China

		Page
Fig. S1	¹ H NMR spectrum of 2 .	2
Fig. S2	13 C NMR spectrum of 2 .	2
Fig. S3	¹ H NMR spectrum of 3 .	3
Fig. S4	13 C NMR spectrum of 3 .	3
Fig. S5	¹ H NMR spectrum of 4 .	4
Fig. S6	13 C NMR spectrum of 4 .	4
Fig. S7	ESI-MS spectrum of 4 .	5
Fig. S8	¹ H NMR spectrum of probe 1 .	5
Fig. S9	13 C NMR spectrum of probe 1 .	6
Fig. S10	MALDI-TOF HRMS spectrum of probe 1.	6
Fig. S11	H, H-COSY spectrum of probe 1 .	7
Fig. S12	Partial H, H-COSY spectrum of probe 1.	7
Fig. S13	2D-NOESY spectrum of probe 1.	8
Fig. S14-16	Partial 2D-NOESY spectrum of probe 1.	8-9
Fig. S17	Photo of probe 1 (50 μ M) in ACN-phosphate buffer (20 mM,	10
	1:1, v/v) at various pH.	
Fig. S18	Time course of fluorescence intensity at 517 nm of $1 (50 \ \mu\text{M})$ in	10
	ACN-phosphate buffer (20 mM, 1:1, v/v) at various pH.	
	Determination of pK_a from fluorimetric titration	10
Fig. S19	The calculation of pK_a based on ratiometric response of probe 1	11
	to H^+ concentration in pH range from 7.0 to 5.5.	
Fig. S20	Partial ¹ H NMR titration spectra $(1.0 - 4.4 \text{ ppm})$ of probe 1	11
	with stepwise addition of TFA $(0 - 3.2 \text{ equiv})$.	
Fig. S21	Partial ¹ H NMR titration spectra (5.5 - 9.0 ppm) of probe 1 with	12
	stepwise addition of TFA $(0 - 3.2 \text{ equiv})$.	
Fig. S22	¹ H NMR titration spectra of probe 1 with TFA (3.2 equiv) upon	12
	the stepwise addition of TEA $(0 - 3.2 \text{ equiv})$.	
Fig. S23	Fluorescence spectra of 1 (50 μ M) in ACN-phosphate buffer	13
	(20 mM, pH 4.0, 1:1, v/v) upon addition of various metal ions.	
Fig. S24	Fluorescence spectra of 1 (50 μ M) in ACN-phosphate buffer	13
	(20 mM, pH 7.0, 1:1, v/v) upon addition of various metal ions.	

Contents

Fig. S25	Photos of probe 1 (50 μ M) in ACN-phosphate buffer (20 mM,	14
	1:1, v/v) at pH 4.0 (upper) and 7.0 (lower) upon addition of	
	various metal ions (5 equiv).	

Fig. S1 ¹H NMR spectrum of **2**.

Fig. S2 ¹³C NMR spectrum of 2.

Fig. S3 ¹H NMR spectrum of **3**.

Fig. S4 ¹³C NMR spectrum of **3**.

Fig. S5 1 H NMR spectrum of **4**.

Fig. S6¹³C NMR spectrum of 4.

Fig. S7 ESI-MS spectrum of 4.

Fig. S8 ¹H NMR spectrum of probe **1**.

Fig. S9 ¹³C NMR spectrum of probe 1.

Fig. S10 MALDI-TOF HRMS spectrum of probe 1.

Fig. S11 H, H-COSY spectrum of probe 1.

Fig. S12 Partial H, H-COSY spectrum of probe 1.

Fig. S13 2D-NOESY spectrum of probe 1.

Fig. S14 Partial 2D-NOESY spectrum of probe 1.

Fig. S15 Partial 2D-NOESY spectrum of probe 1.

Fig. S16 Partial 2D-NOESY spectrum of probe 1.

Fig. S17 Photo of probe 1 (50 μ M) in ACN-phosphate buffer (20 mM, 1:1, v/v) at various pH.

Fig. S18 Time course of fluorescence intensity at 517 nm of 1 (50 μ M) in ACN-phosphate buffer (20 mM, 1:1, v/v) at various pH.

Determination of pK_a from fluorimetric titration

The constants K_a of probe **1** was determined in aqueous buffered solution by fluorimetric titration as a function of pH using the fluorescence emission spectra. The expression of the steady-state fluorescence signal F as a function of the H⁺ concentration has been derived for the case of a *n*:1 complex between H⁺ and probe **1**,¹⁻⁴

equation 1:
$$F = \frac{F_{\max}[H^+]^n + F_{\min}K_a}{K_a + [H^+]^n}$$
(1)

In our experiments, probe **1** showed a ratiometric response to H^+ concentration in the range 7.0 to 5.5, thus, the fluorescence signals F_{min} and F_{max} were considered as the ratio of $I_{690 \text{ nm}}/I_{517 \text{ nm}}$ at minimal and maximal H^+ concentration, respectively, and *n* was considered as 1 (the stoichiometry of H^+ for spiropyran ring opening). Then we get a p K_a of 5.9.

Fig. S19 The calculation of pK_a based on ratiometric response of probe 1 to H⁺ concentration in pH range from 7.0 to 5.5.

Fig. S20 Partial ¹H NMR titration spectra (1.0 - 4.4 ppm) of probe **1** with stepwise addition of TFA (0 - 3.2 equiv).

Fig. S21 Partial ¹H NMR titration spectra (5.5 - 9.0 ppm) of probe 1 with stepwise addition of TFA (0 - 3.2 equiv).

Fig. S22 ¹H NMR titration spectra of probe **1** with TFA (3.2 equiv) upon the stepwise addition of TEA (0 - 3.2 equiv). Peaks * were attributed to the protons of TEA.

Fig. S23 Fluorescence spectra of **1** (50 μM) in ACN-phosphate buffer (20 mM, pH 4.0, 1:1, v/v) upon addition of various metal ions: Na⁺ (150 mM), K⁺ (150 mM), Ca²⁺ (3 mM), Mg²⁺ (3 mM), Li⁺ (50 μM), Ag⁺ (50 μM), Cu²⁺ (50 μM), Fe²⁺ (50 μM), Fe³⁺ (50 μM), Zn²⁺ (50 μM), Co²⁺ (50 μM), Ni²⁺ (50 μM), Cd²⁺ (50 μM), Hg²⁺ (50 μM), Pb²⁺ (50 μM).

Fig. S24 Fluorescence spectra of **1** (50 μM) in ACN-phosphate buffer (20 mM, pH 7.0, 1:1, v/v) upon addition of various metal ions: Na⁺ (150 mM), K⁺ (150 mM), Ca²⁺ (3 mM), Mg²⁺ (3 mM), Li⁺ (50 μM), Ag⁺ (50 μM), Cu²⁺ (50 μM), Fe²⁺ (50 μM), Fe³⁺ (50 μM), Zn²⁺ (50 μM), Co²⁺ (50 μM), Ni²⁺ (50 μM), Cd²⁺ (50 μM), Hg²⁺ (50 μM), Pb²⁺ (50 μM).

Fig. S25 Photos of probe **1** (50 μ M) in ACN-phosphate buffer (20 mM, 1:1, v/v) at pH 4.0 (upper) and 7.0 (lower) upon addition of various metal ions (5 equiv).

References:

- 1. E. Cielen, A. Tahri, K. Ver Heyen, G. J. Hoornaert, F. C. De Schryver and N. Boens, *J. Chem. Soc.*, *Perkin Trans.* 2, 1998, 1573-1580.
- 2. W. Qin, M. Baruah, A. Stefan, M. Van der Auweraer and N. Boens, *Chem. Phys. Chem.*, 2005, **6**, 2343-2351.
- 3. M. Baruah, W. Qin, N. Basarić, W. M. De Borggraeve and N. Boens, *J. Org. Chem.*, 2005, **70**, 4152-4157.
- 4. J. E. Whitaker, R. P. Haugland and F. G. Prendergast, *Anal. Biochem.*, 1991, **194**, 330-344.