_

Supplementary Information

Table 1.- Representative structures characterizing the energy landscape of the PES of the $Pd_{12}Pt_1$ cluster. The Relative Abundance (RA) of the root pairs is also presented. E_{Bottom} is the Total Energy of the structures found in the search, E_{Top} indicates the energy lid value at which the transition occurs, and ΔE is the energy barrier value. All energies are eV/atom.

Туре	E _{Bottom}	E _{Top}	ΔΕ	Structure	CNA	RA
		_			indices	
					322	0.7142
Ih	-3.5385	-3.4400	0.0985		555	0.2857
				•	211	0.2500
					311	0.3333
Ih-Ino	-3.4309	-3.4000	0.0309		322	0.1666
				· · · · · · · · · · · · · · · · · · ·	422	0.1666
				•	432	0.0833
				***	211	0.1428
BP	-3.4222	-3.3700	0.0522		311	0.7142
					421	0.1428
					211	0.3157
					311	0.4210
S 1	-3.4181	-3.4000	0.0181		322	0.0526
					421	0.1052
					422	0.1052
					211	0.2222
				-	322	0.4444
S 2	-3.3987	-3.3500	0.0487		422	0.1111
					432	0.1111
				•	555	0.1111
					211	0.2666
				^~?	311	0.3666
S 3	-3.3976	-3.3800	0.0176	XXX	322	0.2000
					422	0.1333
					432	0.0333
					211	0.2631
S 4	-3.3952	-3.3600	0.0352	₩ ₩	322	0.3684
					432	0.2368
					555	0.1315

					211	0.2857
S 5	-3.3803	-3.3600	0.0203		311	0.2380
					322	0.2380
				-	432	0.2380
					211	0.3333
MT-Ih ₁	-3.3786	-3.3300	0.0486		322	0.3333
					432	0.2500
					555	0.0833
					211	0.3055
S 6	-3.3651	-3.3200	0.0451		322	0.3888
					432	0.2222
					555	0.0833
					211	0.2222
S 7	-3.3638	-3.3400	0.0238		311	0.4444
				- {}}	322	0.2222
					422	0.1111
					211	0.3714
S 8	-3.3620	-3.3500	0.0120	K	322	0.3142
					432	0.2571
					555	0.0571
					211	0.2105
MT-Ih ₂	-3.3561	-3.3000	0.0561		322	0.4736
					432	0.1842
					555	0.1315
				-	211	0.1428
				****	311	0.5714
S 9	-3.3488	-3.3100	0.0388	HAAAA	322	0.0714
					421	0.0714
					422	0.1428
					211	0.1818
S 10	-3.3480	-3.3000	0.0480	K K K K K K K K K K K K K K K K K K K	311	0.7272
					421	0.0909
					211	0.3428
S11	-3.3488	-3.3200	0.0238		322	0.3714
				\mathbf{V}	432	0.2285
				• •	555	0.0571
					211	0.2162
MT-Ih ₃	-3.3421	-3.2800	0.0621		322	0.5135
					432	0.1621
				¥**	555	0.1081
					211	0.3823
S12	-3.3365	-3.3000	0.0365		322	0.3529
					432	0.2352
				•	555	0.0294

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013

					211	0.3461
				- M	311	0.5000
S13	-3.3113	-3.2900	0.0213		322	0.0769
					421	0.0384
				*	422	0.0384
				<u>_</u>	211	0.4242
HL	-3.3110	-3.2800	0.0310		322	0.3333
				O -o ^{**} o	432	0.2424
				0_	211	0.4242
HR	-3.3110	-3.2800	0.0310	· · · · · ·	322	0.3333
				6 1 0	432	0.2424
				*	211	0.3750
S14	-3.3066	-3.2900	0.0166		311	0.3750
					322	0.1666
				₩	422	0.0833
					211	0.3846
				TXT	311	0.3076
S15	-3.2989	-3.2800	0.0189		322	0.2307
					421	0.0384
				*	543	0.0384
					211	0.4242
S16	-3.2935	-3.2700	0.0235	\rightarrow	322	0.3333
					432	0.2424
				MARI -	211	0.4545
S17	-3.2651	-3.2400	0.0251		322	0.2727
				¥	432	0.2727

Туре	E _{Bottom}	E _{Top}	ΔE	Pd-Pd Bonds	Pt-Pd Bonds	Structure	CNA	RA
				Donus	Donus	*	322	0.7142
							555	0.2857
Ih_1	-3.5385	-3.4400	0.0985	30	12		555	0.2057
						•		
							211	0.1794
							322	0.4871
Ih_2	-3.4677	-3.4200	0.0477	28	11		432	0.1794
							555	0.1538
							211	0.2051
			0.04.44	• •			322	0.4358
Ih ₃	-3.4661	-3.4200	0.0461	28	11		432	0.2051
							555	0.1538
							211	0.2051
	0.4.4.4		0.0444	• •			322	0.4358
Ih ₄	-3.4641	-3.4200	0.0441	28	11	XXXX	432	0.2051
							555	0.1538
							322	0.7142
						XXXXX	555	0.2857
Ih_5	-3.4158	-3.3800	0.0358	36	6			
						•		
							211	0.1794
	2 2005	2 2 4 0 0	0.0505	22	-		322	0.4871
lh_6	-3.3905	-3.3400	0.0505	32	1		432	0.1794
							555	0.1538
							211	0.2051
Ib_	2 2707	2 2200	0.0407	27	7		322	0.4358
1117	-3.3/9/	-3.3300	0.0497	52	/		432	0.2051
						•	335	0.1338
							211	0.2051
Iha	3 3712	3 3300	0.0412	33	6		322	0.4358
1118	-3.3712	-5.5500	0.0412	55	0	1075	452 555	0.2051
							211	0.1338
							211	0.2051
Iha	-3 3648	-3 3200	0.0448	33	6		322 422	0.4358
IIIg	5.5040	5.5200	0.0440	55	0		432	0.2031
								0.1330
							211	0.2051
Ih	-3 3618	-3 3200	0.0/18	33	6		522 422	0.4358
m 10	-5.5010	-5.5200	0.0410	55	0		432 555	0.2031
							555	0.1338

Table 2.- Icosahedral-type structures found for $Pd_{12}Pt_1$ clusters.

Ih ₁₁	-3.3309	-3.3000	0.0309	36	3	211 322 432	0.2051 0.4358 0.2051 0.1528	
Ih ₁₂	-3.3234	-3.2800	0.0434	36	3	555 211 322 432	0.1538 0.2051 0.4358 0.2051	
						555	0.1538	

Table 3.- Helical ("Bernal spiral") structures found for $Pd_{12}Pt_1$ clusters. The helical shape is obtained by face-sharing tetrahedra growing in a preferential direction (anisotropic growth). Helical structures are characterized by the CNA indices 211, 322 and 432, with relative abundances 0.4242, 0.3333 and 0.2424, respectively.

Туре	E _{Bottom}	E _{Top}	ΔE	Pd-Pd Bonds	Pt-Pd Bonds	Structure
HR_1	-3.3110	-3.2800	0.0310	27	6	2.
HL_1	-3.3110	-3.2800	0.0310	27	6	<u>.</u> ,
HR ₂	-3.3026	-3.2700	0.0326	27	6	2.
HL ₂	-3.3026	-3.2700	0.0326	27	6	<u>.</u>
HR ₃	-3.2982	-3.2800	0.0182	27	6	2.
HL ₃	-3.2982	-3.2800	0.0182	27	6	<u> </u>
HR_4	-3.2965	-3.2700	0.0265	28	5	2
HL_4	-3.2965	-3.2600	0.0365	28	5	
HR_5	-3.2960	-3.2800	0.0160	27	6	2

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013

HL_5	-3.2960	-3.2600	0.0360	27	6	
HR ₆	-3.2801	-3.2400	0.0401	29	4	2.
HL6	-3.2801	-3.2300	0.0501	29	4	<u> </u>
HR-	-3 2606	-3 2200	0.0406	30	3	
	-3.2000	-3.2200	0.0406	20	2	
HL_7	-3.2606	-3.2200	0.0406	30	3	~ •

Table 4.- Homotops found for the biplanar topology of the $Pd_{12}Pt_1$ cluster. Biplanar structures are characterized by the CNA indices 211, 311 and 421, with relative abundances 0.1428, 0.7142 and 0.1428, respectively. Homotop BP₃ is chiral, existing as the enantiomers BP₃' and BP₃''.

Туре	E _{Bottom}	E _{Top}	ΔΕ	Pd-Pd Bonds	Pt-Pd Bonds	Structure
BP ₁	-3.4222	-3.3700	0.0522	27	9	
BP ₂	-3.3963	-3.3600	0.0363	27	7	
BP ₃ '	-3.3661	-3.3200	0.0461	31	5	
BP ₃ "	-3.3661	-3.3000	0.0661	31	5	
BP ₄	-3.3522	-3.2800	0.0722	32	4	