Three-Component Solvent-free Synthesis of 1*H*-pyrazol-5-(4*H*)-one-Based Heterocyclic Ketene Aminals Derivatives

Fuchao Yu,^a Zhiqiong Chen,^a Xiaopan Hao,^a Xiuyang Jiang,^a Shengjiao Yan^{*,a}, Jun Lin^{*,a,b}

^aKey Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China

^bState Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, P. R. China

Supporting Information

Table of Contents

General Information
General Procedure for the Preparation of α,β -Unsaturated Pyrazolone-Based HKAs Derivative 6
via Three-Component Reaction in One-Pot4
Spectroscopic Data of α,β -Unsaturated Pyrazolone-Based HKAs Derivative 6
General Procedure for the Preparation of α,β -Unsaturated Pyrazolone-Based HKAs Derivative
7–8 <i>via</i> Three-Component Reaction in One-Pot
X-ray Structure and Data of 6c
¹ H NMR and ¹³ C NMR Spectra for α,β -Unsaturated Pyrazolone-Based HKAs 6-8 27
Figure 1. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 6a
Figure 2. ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆) spectra of compound 6a
Figure 3. ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆ +HClO ₄) spectra of compound 6b
Figure 4. ¹³ C NMR (125 MHz, DMSO- d_6 +HClO ₄) spectra of compound 6b
Figure 5. ¹ H NMR (400 MHz, CDCl ₃) spectra of compound 6c
Figure 6. ¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 6c
Figure 7. ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) spectra of compound 6d
Figure 8. ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆) spectra of compound 6d
Figure 9 . ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 6e
Figure 10. ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆) spectra of compound 6e
Figure 11. ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) spectra of compound 6f
Figure 12. ¹³ C NMR (100 MHz, DMSO - <i>d</i> ₆) spectra of compound 6f
Figure 13. ¹ H NMR (400 MHz, CDCl ₃) spectra of compound 6g
Figure 14. ¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 6g40

Figure 15. ¹ H NMR (400 MHz, CDCl ₃) spectra of compound 6h	41
Figure 16. ¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 6h	42
Figure 17. ¹ H NMR (400 MHz, CDCl ₃) spectra of compound 6i	43
Figure 18. ¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 6i	44
Figure 19. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 6 j	45
Figure 20. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 6j	46
Figure 21. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 6k	47
Figure 22. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 6k	48
Figure 23. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 61	49
Figure 24. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 61	50
Figure 25. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 6m	51
Figure 26. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 6m	52
Figure 27. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 6n	53
Figure 28. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 6n	54
Figure 29. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 7a	55
Figure 30. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 7a	56
Figure 31. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 7b	57
Figure 32. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 7b	58
Figure 33. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 7c	59
Figure 34. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 7c	60
Figure 35. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 7d	61
Figure 36. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 7d	62
Figure 37. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 7e	63
Figure 38. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 7e	64
Figure 39. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 7f	65
Figure 40. ¹³ C NMR (125 MHz, DMSO $-d_6$) spectra of compound 7f	66
Figure 41. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 7 g	67
Figure 42. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 7g	68
Figure 43. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 7h	69
Figure 44. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 7h	70
Figure 45. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 7i	71
Figure 46. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 7 i	72
Figure 47. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 7j	73
Figure 48. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 7j	74
Figure 49. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 7k	75
Figure 50. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 7k	76
Figure 51. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 71	77
Figure 52. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 71	78
Figure 53. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 7m	79
Figure 54. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 7m	80

Figure 55. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 8a	81
Figure 56. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 8a	82
Figure 57. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 8b	83
Figure 58. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 8b	84
Figure 59. ¹ H NMR (400 MHz, CDCl ₃) spectra of compound 8c	85
Figure 60. ¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 8c	86
Figure 61. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 8d	87
Figure 62. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 8d	
Figure 63. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 8e	
Figure 64. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 8e	90
Figure 65. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 8f	91
Figure 66. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 8f	92
Figure 67. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 8g	93
Figure 68. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 8g	94
Figure 69. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 8h	95
Figure 70. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 8h	96
Figure 71. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 8i	97
Figure 72. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 8i	
Figure 73. ¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 8j	99
Figure 74. ¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 8 j	

General Information

All compounds were fully characterized by spectroscopic data. The NMR spectra were recorded on the Bruker DRX400 or DRX500, chemical shifts (δ) are expressed in ppm, and *J* values are given in Hz, DMSO-*d*₆ and CDCl₃ were used as solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using a KBr pellet. The reactions were monitored by thin-layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on XT-4A melting point apparatus and are uncorrected. HRMs were performed on a Agilent LC/Msd TOF and Monosiotopic Mass instrument. All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on silica gel (200–300 mesh). The raw material **1–3** was synthesized according to the literature.¹

<u>General Procedure for the Preparation of α,β-Unsaturated Pyrazolone-Based</u> <u>HKAs Derivative 6 via Three-Component Reaction in One-Pot</u>

HKAs 1 (1.0 mmol), triethoxy-methane 4 (2.0 mmol) and 1-phenyl-1*H*-pyrazol-5(4H)-one derivatives 5 (1.2 mmol) were charged into a 25 mL round-bottom flask and the mixture was heated to 110°C for about 10 minutes and monitored by TLC. Until the substrate HKA has been used up. Then reaction mixture was cooled to room temperature, filtered and washed by 95% EtOH to give pure product with 85–95% yield. The products were further identified by FTIR, NMR and HRMS, being in good agreement with the assigned structures.

Spectroscopic Data of α,β -Unsaturated Pyrazolone-Based HKAs Derivative 6

(Z)-4-(2-(Imidazolidin-2-ylidene)-3-(4-methoxyphenyl)-3-oxopropylidene)-3-meth yl-1-phenyl-1*H*-pyrazol-5(4*H*)-one (6a)

Saffron yellow solid; Mp 204–205.5 °C; IR (KBr): 3307, 2965, 1625, 1593, 1496, 1427, 1392, 1294, 1252, 1176, 1127, 992, 841, 765 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 1.95$ (s, 3H, CH₃), 3.76–3.79 (m, 4H, NCH₂CH₂N), 3.78 (s, 3H, OCH₃), 6.95–6.97 (m, 2H, ArH), 7.00–7.04 (m, 1H, ArH), 7.28–7.32 (m, 2H, ArH), 7.42 (s, 1H, CH), 7.52–7.55 (m, 2H, ArH), 7.89–7.91 (m, 2H, ArH), 9.67 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 13.3$ (CH₃), 43.4 (NCH₂), 43.4 (CH₂N), 55.3 (OCH₃), 113.3, 117.9, 122.9, 128.5, 130.8, 130.8 (=CH), 132.7, 139.9, 142.9, 150.4, 161.4 (HNC=), 162.8 (CH₃OC=), 165.9 (NC=O), 191.8 (C=O); HRMS (EI): *m/z* calcd for C₂₃H₂₂N₄O₃ [M], 402.1692; found, 402.1690.

(Z)-4-(2-(Imidazolidin-2-ylidene)-3-oxo-3-*p*-tolylpropylidene)-3-methyl-1-phenyl-1*H*-pyrazol-5(4*H*)-one (6b)

Saffron yellow solid; Mp 238–241 °C; IR (KBr): 3321, 1625, 1593, 1496, 1397, 1257, 1185, 1128, 1048, 990, 763 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6 +HClO₄): δ = 2.26 (s, 3H, CH₃), 2.33 (s, 3H, CH₃), 3.82–3.85 (m, 4H, NCH₂CH₂N), 7.27–7.29 (m, 3H, CH and ArH), 7.43–7.49 (m, 5H, ArH), 7.59–7.61 (m, 2H, ArH), 9.72 (br, 2H, NH); ¹³C NMR (125 MHz, DMSO- d_6 + HClO₄): δ = 11.5 (CH₃), 21.4 (PhCH₃), 44.4 (NCH₂), 44.4 (CH₂N), 100.8, 114.3, 120.9, 126.7, 129.4, 129.5, 129.5 (=CH), 135.2, 135.7, 139.7, 143.3, 150.7, 158.8 (HNC=), 165.7 (NC=O), 191.8 (C=O); HRMS (EI): *m/z* calcd for C₂₃H₂₂N₄O₂ [M], 386.1743; found, 386.1735.

(Z)-4-(2-(Imidazolidin-2-ylidene)-3-oxo-3-phenylpropylidene)-3-methyl-1-phenyl-1*H*-pyrazol-5(4*H*)-one (6c)

Saffron yellow solid; Mp 231–235 °C; IR (KBr): 3288, 2878, 1623, 1585, 1495, 1428, 1258, 1130, 1037, 994, 751 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 1.84 (s, 3H, CH₃), 3.87–3.90 (m, 4H, NCH₂CH₂N), 7.18–7.22 (m, 1H, ArH), 7.42–7.55 (m, 7H, ArH), 7.63 (s, 1H, CH), 7.89–7.92 (m, 2H, ArH), 11.34 (br, 2H, NH); ¹³C NMR (100 MHz, CDCl₃): δ = 13.2 (*C*H₃), 43.8 (*NC*H₂), 43.8 (*C*H₂N), 101.5, 106.5, 120.4, 125.0, 128.3, 128.7, 128.7, 130.9, 138.8, 140.8, 147.9, 152.8, 163.5 (HN*C*=), 165.5 (*NC*=O), 198.1 (*C*=O); HRMS (EI): *m*/*z* calcd for C₂₂H₂₀N₄O₂ [M], 372.1586; found, 372.1590.

(Z)-4-(3-(4-Chlorophenyl)-2-(imidazolidin-2-ylidene)-3-oxopropylidene)-3-methyl -1-phenyl-1*H*-pyrazol-5(4*H*)-one (6d)

Saffron yellow solid; Mp 233–237 °C; IR (KBr): 3321, 2886, 1631, 1591, 1494, 1428, 1392, 1254, 1182, 1128, 1088, 1044, 993, 823, 763 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.27 (s, 3H, CH₃), 3.81–3.86 (m, 4H, NCH₂CH₂N), 7.23–7.26 (m, 1H, ArH), 7.41–7.45 (m, 4H, ArH), 7.47–7.50 (m, 3H, ArH), 7.52 (s, 1H, CH), 7.67–7.69 (m, 2H, ArH), 9.71 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 11.2 (*C*H₃), 44.0 (*NC*H₂), 44.0 (*C*H₂N), 100.9, 112.5, 120.5, 126.2, 128.5, 129.1, 129.2, 130.9, 135.4, 136.5, 137.2, 150.5, 158.6 (HN*C*=), 165.1 (*NC*=O), 190.6 (*C*=O); HRMS (EI): *m/z* calcd for C₂₂H₁₉ClN₄O₂ [M], 406.1197; found, 406.1191.

(Z)-4-(3-(4-Fluorophenyl)-2-(imidazolidin-2-ylidene)-3-oxopropylidene)-3-methyl -1-phenyl-1H-pyrazol-5(4H)-one (6e)

Saffron yellow solid; Mp 202–204 °C; IR (KBr): 3333, 2900, 1626, 1591, 1496, 1429, 1395, 1338, 1254, 1127, 1044, 993, 841, 765 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 1.97 (s, 3H, CH₃), 3.74–3.78 (m, 4H, NCH₂CH₂N), 6.99–7.03 (m, 1H, ArH), 7.19–7.24 (m, 2H, ArH), 7.27–7.31 (m, 2H, ArH), 7.41 (s, 1H, CH), 7.57–7.61 (m, 2H, ArH), 7.84–7.86 (m, 2H, ArH), 9.49 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO- d_6): δ = 13.1 (*C*H₃), 43.4 (N*C*H₂), 43.4 (*C*H₂N), 105.1, 114.8 (d, *J* = 21.5 Hz), 117.8, 123.0, 128.5, 131.0, 137.1, 139.8, 142.9, 150.3, 162.1, 162.7 (HN*C*=), 164.5,

165.8 (N*C*=O), 191.0 (*C*=O); HRMS (EI): *m*/*z* calcd for C₂₂H₁₉FN₄O₂ [M], 390.1492; found, 390.1492.

(Z)-4-(3-(2-Chlorophenyl)-2-(imidazolidin-2-ylidene)-3-oxopropylidene)-3-methyl -1-phenyl-1*H*-pyrazol-5(4*H*)-one (6f)

Saffron yellow solid; Mp 204–207 °C; IR (KBr): 3278, 1886, 1625, 1588, 1497, 1434, 1282, 1243, 1133, 1042, 996, 759 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 1.69$ (s, 3H, CH₃), 3.80–3.83 (m, 4H, NCH₂CH₂N), 7.04–7.08 (m, 2H, ArH), 7.31–7.35 (m, 3H, CH and ArH), 7.41–7.48 (m, 2H, ArH), 7.53–7.55 (m, 1H, ArH), 7.88–7.89 (m, 2H, ArH), 10.09 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 12.6$ (CH₃), 43.4 (NCH₂), 43.4 (CH₂N), 101.4, 105.2, 118.3, 123.6, 127.4, 128.6, 128.6, 129.4, 129.5, 130.6, 139.4, 139.9, 144.6, 150.7, 162.7 (HN*C*=), 164.3 (N*C*=O), 190.9 (*C*=O); HRMS (EI): *m/z* calcd for C₂₂H₁₉ClN₄O₂ [M], 406.1197; found, 406.1191.

(Z)-4-(2-(Imidazolidin-2-ylidene)-3-(4-methoxyphenyl)-3-oxopropylidene)-1-phen yl-3-(trifluoromethyl)-1*H*-pyrazol-5(4*H*)-one (6g)

Saffron yellow solid; Mp 227–230 °C; IR (KBr): 3205, 2965, 1640, 1594, 1500, 1414, 1285, 1112, 1033, 982, 837, 761 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 3.87 (s, 3H, OCH₃), 3.90–3.94 (m, 4H, NCH₂CH₂N), 6.92–6.95 (m, 2H, ArH), 7.24–7.27 (m, 1H, ArH), 7.42–7.46 (m, 2H, ArH), 7.59–7.62 (m, 2H, ArH), 7.81 (s, 1H, CH), 7.89–7.91 (m, 2H, ArH), 11.18 (br, 2H, NH); ¹³C NMR (100 MHz, CDCl₃): δ = 44.0 (NCH₂), 44.0 (*C*H₂N), 55.5 (OCH₃), 99.6, 105.3, 113.6, 119.5, 121.3, 126.0, 128.8, 128.8, 131.7, 131.9, 131.9, 138.5, 146.9, 162.9 (HN*C*=), 165.5 (N*C*=O), 197.1 (*C*=O); HRMS (EI): *m/z* calcd for C₂₃H₁₉F₃N₄O₃ [M], 456.1409; found, 456.1407.

(Z)-4-(2-(Imidazolidin-2-ylidene)-3-oxo-3-p-tolylpropylidene)-1-phenyl-3-(trifluo romethyl)-1*H*-pyrazol-5(4*H*)-one (6h)

Saffron yellow solid; Mp 207-209 °C; IR (KBr): 3292, 1889, 1634, 1531, 1499, 1441,

1376, 1278, 1180, 1122, 1040, 972, 766 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 2.42 (s, 3H, CH₃), 3.90–3.94 (m, 4H, NCH₂CH₂N), 7.23–7.27 (m, 3H, ArH), 7.41–7.49 (m, 4H, ArH), 7.83 (s, 1H, CH), 7.88–7.89 (m, 2H, ArH), 11.18 (br, 2H, NH); ¹³C NMR (100 MHz, CDCl₃): δ = 21.6 (PhCH₃), 44.0 (NCH₂), 44.0 (CH₂N), 99.9, 105.3, 119.2, 121.3, 121.9, 126.1, 128.8, 129.0, 129.4, 136.6, 138.4, 142.6, 147.5, 163.0 (HN*C*=), 165.4 (N*C*=O), 198.3 (*C*=O); HRMS (EI): *m*/*z* calcd for C₂₃H₁₉F₃N₄O₂ [M], 440.1460; found, 440.1452.

(Z)-4-(2-(Imidazolidin-2-ylidene)-3-oxo-3-phenylpropylidene)-1-phenyl-3-(trifluo romethyl)-1*H*-pyrazol-5(4*H*)-one (6i)

Saffron yellow solid; Mp 233–235 °C; IR (KBr): 3288, 2886, 1632, 1523, 1499, 1437, 1370, 1272, 1183, 1121, 968, 758 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 3.91–3.95 (m, 4H, NCH₂CH₂N), 7.24–7.28 (m, 1H, ArH), 7.41–7.47 (m, 4H, ArH), 7.52–7.56 (m, 3H, ArH), 7.82 (s, 1H, CH), 7.87–7.89 (m, 2H, ArH), 11.19 (br, 2H, NH); ¹³C NMR (100 MHz, CDCl₃): δ = 43.9 (NCH₂), 43.9 (CH₂N), 100.2, 105.0, 119.1, 121.3, 121.8, 126.1, 128.4, 128.8, 128.9, 131.6, 138.4, 139.6, 147.8, 163.5 (HN*C*=), 165.3 (N*C*=O); HRMS (EI): *m*/*z* calcd for C₂₂H₁₇F₃N₄O₂ [M], 426.1304; found, 426.1296.

(Z)-4-(3-(4-Chlorophenyl)-2-(imidazolidin-2-ylidene)-3-oxopropylidene)-1-phenyl -3-(trifluoromethyl)-1*H*-pyrazol-5(4*H*)-one (6j)

Saffron yellow solid; Mp 230–233 °C; IR (KBr): 3221, 2969, 1640, 1583, 1499, 1403, 1282, 1176, 1114, 982, 836, 757 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 3.80–3.87 (m, 4H, NCH₂CH₂N), 7.14 (m, 1H, ArH), 7.37 (m, 3H, ArH), 7.54 (m, 4H, CH and ArH), 7.89 (m, 2H, ArH), 9.59 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO- d_6): δ = 43.7 (NCH₂), 43.7 (CH₂N), 106.3, 118.9, 120.0, 122.7, 124.4, 125.4, 128.4, 128.7, 130.2, 135.9, 137.9, 139.3, 141.1, 161.7 (HNC=), 166.3 (NC=O), 190.3 (C=O); HRMS (EI): *m/z* calcd for C₂₂H₁₆ClF₃N₄O₂ [M], 460.0914; found, 460.0915.

(Z)-4-(3-(4-Fluorophenyl)-2-(imidazolidin-2-ylidene)-3-oxopropylidene)-1-phenyl -3-(trifluoromethyl)-1*H*-pyrazol-5(4*H*)-one (6k)

Saffron yellow solid; Mp 237–240 °C; IR (KBr): 3305, 2900, 1633, 1606, 1523, 1500, 1442, 1377, 1274, 1236, 1184, 1123, 1044, 972, 841, 765 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 3.82-3.87$ (m, 4H, NCH₂CH₂N), 7.12–7.14 (m, 1H, ArH), 7.28–7.40 (m, 5H, CH and ArH), 7.57–7.62 (m, 2H, ArH), 7.88–7.94 (m, 2H, ArH), 9.61 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 43.7$ (NCH₂), 43.7 (CH₂N), 96.7, 106.5, 115.3 (d, J = 23.6 Hz), 118.9, 120.1, 122.8, 124.4, 128.7, 131.1, 135.7, 139.4, 141.1, 161.7, 162 (HNC=).4, 166.5 (NC=O), 190.4 (C=O); HRMS (EI): m/z calcd for C₂₂H₁₆F₄N₄O₂ [M], 444.1209; found, 444.1212.

(Z)-4-(3-(2-Chlorophenyl)-2-(imidazolidin-2-ylidene)-3-oxopropylidene)-1-phenyl -3-(trifluoromethyl)-1*H*-pyrazol-5(4*H*)-one (6l)

Saffron yellow solid; Mp 224–226 °C; IR (KBr): 3316, 2893, 1633, 1591, 1431, 1377, 1289, 1249, 1184, 1114, 1044, 971, 826, 757 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 3.86–3.90 (m, 4H, NCH₂CH₂N), 7.10 (s, 1H, CH), 7.11–7.15 (m, 1H, ArH), 7.32–7.40 (m, 3H, ArH), 7.44–7.49 (m, 2H, ArH), 7.54–7.56 (m, 1H, ArH), 7.87–7.89 (m, 2H, ArH), 9.64 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO- d_6): δ = 43.7 (NCH₂), 43.7 (CH₂N), 97.2, 106.9, 119.0, 119.8, 122.5, 124.5, 127.3, 128.6, 128.7, 129.6, 130.9, 138.8, 139.3, 142.2, 161.7 (HN*C*=), 165.2 (N*C*=O), 190.1 (*C*=O); HRMS (EI): m/z calcd for C₂₂H₁₆ClF₃N₄O₂ [M], 460.0914; found, 460.0912.

(Z)-4-(2-(1*H*-benzo[d]imidazol-2(3*H*,3a*H*,4*H*,5*H*,6*H*,7*H*,7a*H*)-ylidene)-3-(4-metho xyphenyl)-3-oxopropylidene)-3-methyl-1-phenyl-1*H*-pyrazol-5(4*H*)-one (6m)

Saffron yellow solid; Mp 206–207.5 °C; IR (KBr): 3264, 2933, 1617, 1583, 1500, 1444, 1388, 1349, 1257, 1171, 1138, 1095, 779 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 1.27-1.30$ (m, 2H, CH₂), 1.45–1.49 (m, 2H, CH₂), 1.71–1.75 (m, 2H, CH₂), 2.06–2.11 (m, 2H, CH₂), 2.28 (s, 3H, CH₃), 3.42–3.46 (m, 2H, NCHCHN), 3.82 (s, 3H, OCH₃), 6.96–6.99 (m, 2H, ArH), 7.22–7.26 (m, 1H, ArH), 7.39–7.47 (m, 4H,

ArH), 7.51 (s, 1H, CH), 7.67–7.69 (m, 2H, ArH), 9.99 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 11.2$ (CH₃), 23.4 (NCHCH₂CH₂), 23.4 (CH₂CH₂CHN), 28.3 (NCHCH₂, 28.3 (CH₂CHN), 55.5 (NCH), 55.5 (CHN), 64.1, 100.9, 113.7, 120.5, 121.4, 126.2, 129.1, 129.3, 130.3, 131.5, 135.4, 150.4, 158.5, 162.8 (HN*C*=), 166.9 (N*C*=O), 190.5 (*C*=O); HRMS (EI): m/z calcd for C₂₇H₂₈N₄O₃ [M], 456.2161; found, 456.2157.

(Z)-4-(2-(1*H*-benzo[d]imidazol-2(3*H*,3a*H*,4*H*,5*H*,6*H*,7*H*,7a*H*)-ylidene)-3-(2-chlor ophenyl)-3-oxopropylidene)-3-methyl-1-phenyl-1*H*-pyrazol-5(4*H*)-one (6n)

Saffron yellow solid; Mp 204–207.5 °C; IR (KBr): 3283, 2933, 1624, 1583, 1537, 1494, 1437, 1396, 1367, 1277, 1137, 756 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.31–1.34 (m, 2H, CH₂), 1.38–1.39 (m, 2H, CH₂), 1.57 (m, 2H, CH₂), 1.69 (s, 3H, CH₃), 1.73 (m, 2H, CH₂), 4.11 (m, 2H, NCHCHN), 7.04–7.09 (m, 2H, ArH), 7.31–7.36 (m, 2H, ArH), 7.38 (s, 1H, CH), 7.41–7.47 (m, 2H, ArH), 7.52–7.54 (m, 1H, ArH), 7.86–7.88 (m, 2H, ArH), 10.06 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 12.6 (CH₃), 19.3 (NCHCH₂CH₂), 19.3 (CH₂CH₂CHN), 25.8 (NCHCH₂), 25.8 (CH₂CHN), 54.3 (NCH), 54.3 (CHN), 101.6, 105.4, 118.2, 123.6, 127.4, 128.6, 128.7, 129.4, 129.5, 130.5, 139.4, 140.0, 144.1, 150.7, 162.7 (HN*C*=), 164.2 (N*C*=O), 191.0 (*C*=O); HRMS (EI): *m*/*z* calcd for C₂₆H₂₅ClN₄O₂ [M], 460.1666; found, 460.1679.

<u>General Procedure for the Preparation of α,β-Unsaturated Pyrazolone-Based</u> <u>HKAs Derivative 7–8 *via* Three-Component Reaction in One-Pot</u>

HKAs 2-3 (1.0 mmol), triethoxy-methane 4 (2.0 mmol) and 1-phenyl-1*H*-pyrazol-5(4*H*)-one derivatives 5 (1.2 mmol) were charged into a 25 mL round-bottom flask and the mixture was heated to 110°C for about 10 minutes and monitored by TLC. Until the substrate HKA has been used up. Then reaction mixture was cooled to room temperature, filtered and washed by 95% EtOH to give pure product with 89–96% yield. The products were further identified by FTIR, NMR and HRMS, being in good agreement with the assigned structures.

(Z)-4-(3-(4-Methoxyphenyl)-3-oxo-2-(tetrahydropyrimidin-2(1*H*)-ylidene)propyli dene)-3-methyl-1-phenyl-1*H*-pyrazol-5(4*H*)-one (7a)

Saffron yellow solid; Mp 224–229 °C; IR (KBr): 3263, 2962, 1635, 1597, 1500, 1461, 1359, 1309, 1265, 1166, 1030, 997, 837, 754 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): δ = 1.99 (s, 3H, CH₃), 1.97–2.06 (m, 2H, CH₂), 3.39–3.43 (m, 4H, NCH₂CH₂N), 3.84 (s, 3H, OCH₃), 6.99–7.04 (m, 3H, ArH), 7.27 (s, 1H, CH), 7.31–7.34 (m, 2H, ArH), 7.53–7.55 (m, 2H, ArH), 8.03–8.04 (m, 2H, ArH), 9.03 (br, 2H, NH); ¹³C NMR (125 MHz, DMSO- d_6): δ = 13.6 (CH₃), 17.8 (CH₂), 38.2 (NCH₂), 38.2 (CH₂N), 55.7 (OCH₃), 101.1, 109.9, 113.6, 117.7, 122.4, 128.7, 130.7, 133.2, 141.0, 141.3, 150.0, 161.3, 161.8 (HN*C*=), 163.3 (N*C*=O), 189.8 (*C*=O); HRMS (EI): *m*/*z* calcd for C₂₄H₂₄N₄O₃ [M], 416.1848; found, 416.1855.

(Z)-3-Methyl-4-(3-oxo-2-(tetrahydropyrimidin-2(1*H*)-ylidene)-3-p-tolylpropylide ne)-1-phenyl-1*H*-pyrazol-5(4*H*)-one (7b)

Saffron yellow solid; Mp 249–252 °C; IR (KBr): 3266, 2958, 1635, 1502, 1439, 1352, 1274, 1204, 1142, 1069, 997, 794, 754 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 1.93 (s, 3H, CH₃), 1.96–1.98 (m, 2H, CH₂), 2.35 (s, 3H, ArCH₃), 3.29–3.33 (m, 4H, NCH₂CH₂N), 6.96–6.99 (m, 1H, ArH), 7.22–7.31 (m, 5H, CH and ArH), 7.39–7.42 (m, 2H, ArH), 7.96–7.98 (m, 2H, ArH), 9.00 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO- d_6): δ = 13.2 (CH₃), 17.4 (CH₂), 21.1 (PhCH₃), 37.8 (NCH₂), 37.8 (CH₂N), 100.9, 109.6, 117.4, 122.2, 128.4, 128.4, 128.5, 137.7, 140.2, 140.5, 141.2, 149.7, 161.2 (HN*C*=), 162.8 (N*C*=O), 190.3 (*C*=O); HRMS (EI): *m*/*z* calcd for C₂₄H₂₄N₄O₂ [M], 400.1899; found, 400.1906.

(Z)-3-Methyl-4-(3-oxo-3-phenyl-2-(tetrahydropyrimidin-2(1*H*)-ylidene)propylide ne)-1-phenyl-1*H*-pyrazol-5(4*H*)-one (7c)

Saffron yellow solid; Mp 257–262 °C; IR (KBr): 3256, 3016, 1632, 1594, 1500, 1442, 1381, 1310, 1269, 1204, 1138, 1066, 990, 946, 758 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 1.92$ (s, 3H, CH₃), 1.95–1.98 (m, 2H, CH₂), 3.30–3.36 (m, 4H, NCH₂CH₂N), 6.96–6.99 (m, 1H, ArH), 7.21 (s, 1H, CH), 7.27–7.31 (m, 2H, ArH), 7.43–7.49 (m, 5H, ArH), 7.98–8.00 (m, 2H, ArH), 9.04 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 13.1$ (CH₃), 17.4 (CH₂), 37.8 (NCH₂), 37.8 (CH₂N), 101.1, 109.4, 117.3, 122.2, 127.9, 128.0, 128.4, 130.1, 140.6, 140.7, 141.2, 149.6, 161.2 (HN*C*=), 162.8 (N*C*=O), 190.3 (*C*=O); HRMS (EI): *m*/*z* calcd for C₂₃H₂₂N₄O₂ [M], 386.1743; found, 386.1742.

(Z)-4-(3-(4-Chlorophenyl)-3-oxo-2-(tetrahydropyrimidin-2(1*H*)-ylidene)propylide ne)-3-methyl-1-phenyl-1*H*-pyrazol-5(4*H*)-one (7d)

Saffron yellow solid; Mp 265–269 °C; IR (KBr): 3270, 2973, 1634, 1497, 1359, 1271, 1200, 1146, 1088, 997, 834, 747 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 1.94-1.98$ (m, 5H, CH₃ and CH₂), 3.30–3.37 (m, 4H, NCH₂CH₂N), 6.96–7.00 (m, 1H, ArH),

7.21 (s, 1H, CH), 7.27–7.31 (m, 2H, ArH), 7.48–7.54 (m, 4H, ArH), 7.98–7.99 (m, 2H, ArH), 9.05 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO- d_6): δ = 13.2 (CH₃), 17.4 (CH₂), 37.8 (NCH₂), 37.8 (CH₂N), 101.7, 108.9, 117.3, 122.2, 128.1, 128.4, 129.9, 134.7, 139.5, 140.5, 141,0, 149.8, 161.1 (HN*C*=), 162.8 (N*C*=O), 188.6 (*C*=O); HRMS (EI): *m*/*z* calcd for C₂₃H₂₁ClN₄O₂ [M], 420.1353; found, 420.1354.

(Z)-4-(3-(4-Fluorophenyl)-3-oxo-2-(tetrahydropyrimidin-2(1*H*)-ylidene)propylide ne)-3-methyl-1-phenyl-1*H*-pyrazol-5(4*H*)-one (7e)

Saffron yellow solid; Mp 263–266 °C; IR (KBr): 3266, 2969, 1635, 1598, 1497, 1359, 1268, 1147, 1073, 997, 845, 754 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 1.93-1.96$ (m, 5H, CH₂ and CH₃), 3.28–3.34 (m, 4H, NCH₂CH₂N), 6.96–7.00 (m, 2H, ArH), 7.20 (s, 1H, CH), 7.26–7.31 (m, 4H, ArH), 7.53–7.56 (m, 2H, ArH), 7.96–7.98 (m, 2H, ArH), 9.03 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 13.1$ (*C*H₃), 17.4 (*C*H₂), 37.8 (*NC*H₂), 37.8 (*C*H₂N), 101.4, 109.1, 114.9 (d, J = 21.5 Hz), 117.4, 122.3, 128.4, 130.5, 137.1, 140.4, 141.1, 149.8, 161.1 (HNC=), 162.8 (NC=O), 163.0 (d, J = 245.9 Hz), 188.9 (*C*=O); HRMS (EI): m/z calcd for C₂₃H₂₁FN₄O₂ [M], 404.1649; found, 404.1641.

(Z)-4-(3-(2-Chlorophenyl)-3-oxo-2-(tetrahydropyrimidin-2(1*H*)-ylidene)propylide ne)-3-methyl-1-phenyl-1*H*-pyrazol-5(4*H*)-one (7f)

Saffron yellow solid; Mp 252–254.5 °C; IR (KBr): 3299, 2969, 1634, 1584, 1502, 1436, 1356, 1283, 1200, 1149, 1088, 993, 750 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 1.83$ (s, 3H, CH₃), 1.98–2.04 (m, 2H, CH₂), 3.36–3.44 (m, 4H, NCH₂CH₂N), 6.88 (s, 1H, ACH), 6.99–7.03 (m, 1H, ArH), 7.31–7.36 (m, 3H, ArH), 7.42–7.47 (m, 2H, CH and ArH), 7.53–7.54 (m, 1H, ArH), 8.00–8.02 (m, 2H, ArH), 9.05 (br, 2H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 13.1$ (CH₃), 17.8 (CH₂), 38.3 (NCH₂), 38.3 (CH₂N), 102.1, 109.9, 117.7, 122.7, 127.2, 128.7, 129.3, 129.8, 130.1, 130.5, 140.5, 140.8, 141.8, 149.7, 160.5 (HN*C*=), 163.2 (N*C*=O), 188.6 (*C*=O); HRMS (EI): *m/z* calcd for C₂₃H₂₁ClN₄O₂ [M], 420.1353; found, 420.1348.

(Z)-4-(3-(4-Methoxyphenyl)-3-oxo-2-(tetrahydropyrimidin-2(1*H*)-ylidene)propyli dene)-1-phenyl-3-(trifluoromethyl)-1*H*-pyrazol-5(4*H*)-one (7g)

Saffron yellow solid; Mp 291–293 °C; IR (KBr): 3278, 2965, 1641, 1595, 1501, 1465, 1292, 1258, 1172, 1113, 1069, 975, 838, 761 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.99–2.01 (m, 2H, CH₂), 3.33–3.37 (m, 4H, NCH₂CH₂N), 3.81 (s, 3H, OCH₃), 7.01–7.03 (m, 2H, ArH), 7.11–7.14 (m, 1H, ArH), 7.33–7.37 (m, 2H, ArH), 7.39 (s, 1H, CH), 7.52–7.54 (m, 2H, ArH), 7.94–7.96 (m, 2H, ArH), 9.19 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 17.3 (CH₂), 37.8 (NCH₂), 37.8 (CH₂N), 55.4 (OCH₃), 95.0, 113.4, 114.3, 118.8, 121.6 (d, *J* = 268.7 Hz), 124.1, 128.7, 130.7, 139.0, 139.2, 139.6, 139.7, 160.3, 161.5 (HN*C*=), 161.8 (N*C*=O), 190.9 (*C*=O); HRMS (EI): *m/z* calcd for C₂₄H₂₁F₃N₄O₃ [M], 470.1566; found, 470.1566.

(Z)-4-(3-Oxo-2-(tetrahydropyrimidin-2(1*H*)-ylidene)-3-*p*-tolylpropylidene)-1-phe nyl-3-(trifluoromethyl)-1*H*-pyrazol-5(4*H*)-one (7h)

Saffron yellow solid; Mp 296–298 °C; IR (KBr): 3299, 3013, 1640, 1595, 1499, 1454, 1288, 1179, 1115, 1066, 979, 830, 750 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.97–2.01 (m, 2H, CH₂), 2.36 (s, 3H, ArCH₃), 3.33–3.37 (m, 4H, NCH₂CH₂N), 7.11–7.14 (m, 1H, ArH), 7.27–7.29 (m, 2H, ArH), 7.34–7.38 (m, 2H, ArH), 7.39 (s, 1H, ArH), 7.43–7.45 (m, 2H, ArH), 7.94–7.96 (m, 2H, ArH), 9.21 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 17.3 (CH₂), 21.1 (PhCH₃), 37.8 (NCH₂), 37.8 (CH₂N), 95.1, 114.2, 118.8, 120.2, 122.9, 124.1, 128.5, 128.7, 136.5, 139.3, 139.4, 139.6, 140.9, 160.2 (HN*C*=), 161.8 (N*C*=O), 191.7 (*C*=O); HRMS (EI): *m/z* calcd for C₂₄H₂₁F₃N₄O₂ [M], 454.1617; found, 454.1613.

(Z)-4-(3-Oxo-3-phenyl-2-(tetrahydropyrimidin-2(1*H*)-ylidene)propylidene)-1-phe nyl-3-(trifluoromethyl)-1*H*-pyrazol-5(4*H*)-one (7i)

Saffron yellow solid; Mp 276–285 °C; IR (KBr): 3297, 3013, 1640, 1591, 1500, 1288, 1182, 1118, 1073, 986, 834, 696 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 1.97-2.01$ (m, 2H, CH₂), 3.33–3.37 (m, 4H, NCH₂CH₂N), 7.11–7.15 (m, 1H, ArH), 7.32 (s, 1H, CH), 7.36–7.39 (m, 2H, ArH), 7.45–7.55 (m, 5H, ArH), 7.93–7.95 (m, 2H, ArH), 9.23

(br, 2H, NH); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 17.3$ (CH₂), 37.8 (NCH₂), 37.8 (CH₂N), 95.3, 114.1, 118.8, 120.2, 122.9, 124.2, 128.1, 128.2, 128.7, 130.8, 139.3, 139.4, 139.7, 160.1 (HN*C*=), 161.8 (N*C*=O), 192.0 (*C*=O); HRMS (EI⁺): *m*/*z* calcd for C₂₃H₁₉F₃N₄O₂ [M], 440.1460; found, 440.1457.

(Z)-4-(3-(4-Chlorophenyl)-3-oxo-2-(tetrahydropyrimidin-2(1*H*)-ylidene)propylide ne)-1-phenyl-3-(trifluoromethyl)-1*H*-pyrazol-5(4*H*)-one (7j)

Saffron yellow solid; Mp >300 °C; IR (KBr): 3027, 2581, 1640, 1600, 1499, 1465, 1398, 1291, 1181, 1116, 982, 834, 756 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 1.96–1.98 (m, 2H, CH₂), 3.32–3.35 (m, 4H, NCH₂CH₂N), 7.11–7.15 (m, 1H, ArH), 7.29 (s, 1H, CH), 7.38–7.39 (m, 2H, ArH), 7.50–7.57 (m, 4H, ArH), 7.91–7.93 (m, 2H, ArH), 9.24 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO- d_6): δ = 17.2 (CH₂), 37.8 (NCH₂), 37.8 (CH₂N), 95.6, 113.6, 118.8, 121.5, 123.0, 124.2, 128.3, 128.7, 130.0, 135.5, 138.2, 139.6, 159.9 (HN*C*=), 161.7 (N*C*=O), 190.5 (*C*=O); HRMS (EI): *m*/*z* calcd for C₂₃H₁₈ClF₃N₄O₂ [M], 474.1070; found, 474.1073.

(Z)-4-(3-(4-Fluorophenyl)-3-oxo-2-(tetrahydropyrimidin-2(1*H*)-ylidene)propylide ne)-1-phenyl-3-(trifluoromethyl)-1*H*-pyrazol-5(4*H*)-one (7k)

Saffron yellow solid; Mp 284–288.5 °C; IR (KBr): 3263, 3016, 1641, 1595, 1500, 1457, 1399, 1290, 1174, 1116, 1069, 979, 754 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 1.97-2.02$ (m, 2H, CH₂), 3.33–3.36 (m, 4H, NCH₂CH₂N), 7.11–7.15 (m, 1H, ArH), 7.27–7.31 (m, 2H, CH and ArH), 7.32–7.40 (m, 3H, ArH), 7.56–7.60 (m, 2H, ArH), 7.93–7.95 (m, 2H, ArH), 9.24 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 17.3$ (*C*H₂), 37.8 (*NC*H₂), 37.8 (*C*H₂N), 95.4, 113.8, 115.1, 115.3, 118.8, 121.5 (d, *J* = 268.7 Hz), 124.2, 128.7, 130.8, 130.9, 135.9, 139.6, 160.1 (HN*C*=), 161.8 (*NC*=O), 163.4 (d, *J* = 247.0 Hz), 190.6 (*C*=O); HRMS (EI): *m*/*z* calcd for C₂₃H₁₈F₄N₄O₂ [M], 458.1366; found, 458.1356.

(Z)-4-(3-(2-Chlorophenyl)-3-oxo-2-(tetrahydropyrimidin-2(1*H*)-ylidene)propylide ne)-1-phenyl-3-(trifluoromethyl)-1*H*-pyrazol-5(4*H*)-one (7l)

Saffron yellow solid; Mp 283-287 °C; IR (KBr): 3322, 3009, 1641, 1594, 1541, 1504, 1297, 1185, 1119, 1037, 979 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.97–2.02 (m, 2H, CH₂), 3.35–3.39 (m, 4H, NCH₂CH₂N), 6.97–7.00 (s, 1H, CH), 7.13–7.15 (m, 1H, ArH), 7.32–7.39 (m, 3H, ArH), 7.43–7.49 (m, 2H, ArH), 7.52–7.54 (m, 1H, ArH), 7.89–7.92 (m, 2H, ArH), 9.23 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 17.3 (*C*H₂), 37.8 (*NC*H₂), 37.8 (*C*H₂N), 95.8, 114.3, 118.8, 119.9, 122.6, 124.3, 127.0, 128.7, 129.5, 129.7, 130.7, 138.9, 139.5, 139.6, 140.6, 159.1 (HN*C*=), 161.8 (*NC*=O), 190.2 (*C*=O); HRMS (EI): *m*/*z* calcd for C₂₃H₁₈ClF₃N₄O₂ [M], 474.1070; found, 474.1078.

(Z)-4-(3-Oxo-2-(tetrahydropyrimidin-2(1*H*)-ylidene)-3-*p*-tolylpropylidene)-1-(2,4, 6-trichlorophenyl)-3-(trifluoromethyl)-1*H*-pyrazol-5(4*H*)-one (7m)

saffron yellow solid; Mp 286–289 °C; IR (KBr): 3279, 2918, 1633, 1591, 1498, 1345, 1272, 1142, 1091, 993, 747 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.86–1.90 (m, 2H, CH₂), 2.36 (s, 3H, ArCH₃), 3.26–3.35 (m, 4H, NCH₂CH₂N), 7.27–7.29 (m, 2H, ArH), 7.35 (s, 1H, CH), 7.42–7.44 (m, 2H, ArH), 7.84 (m, 2H, ArH), 9.23 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 17.3 (*C*H₂), 21.1 (Ph*C*H₃), 37.6 (*NC*H₂), 37.6 (*C*H₂N), 93.3, 114.4, 121.4 (d, *J* = 268.8 Hz), 122.7, 128.4, 128.6, 133.9, 134.5, 135.8, 136.5, 139.6, 140.4, 140.8, 160.0 (HN*C*=), 161.8 (*NC*=O), 191.3 (*C*=O); HRMS (TOF ES⁺): *m*/*z* calcd for C₂₄H₁₈Cl₃F₃N₄O₂ [(M+H)⁺], 557.0520; found, 557.0519.

(Z)-4-(2-(1,3-Diazepan-2-ylidene)-3-(4-methoxyphenyl)-3-oxopropylidene)-3-met hyl-1-phenyl-1*H*-pyrazol-5(4*H*)-one (8a)

Saffron yellow solid; Mp 244–248.5 °C; IR (KBr): 3280, 2924, 1634, 1595, 1501, 1349, 1268, 1162, 1138, 1033, 993, 801, 755 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 1.74–1.78 (m, 4H, NCH₂CH₂N), 1.97 (s, 3H, CH₃), 3.33–3.36 (m, 4H, NCH₂CH₂N),

3.78 (s, 3H, OCH₃), 6.97–6.99 (m, 3H, CH and ArH), 7.25–7.31 (m, 3H, ArH), 7.47–7.49 (m, 2H, ArH), 7.94–7.96 (m, 2H, ArH), 8.81 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO- d_6): δ = 13.3 (CH₃), 26.3 (CH₂CH₂), 26.3 (CH₂CH₂), 43.5 (NCH₂), 43.5 (CH₂N), 55.3 (OCH₃), 101.6, 110.9, 113.2, 117.4, 122.4, 128.4, 130.2, 133.1, 140.4, 141.5, 149.9, 160.9 (HN*C*=), 162.9 (N*C*=O), 167.3 (CH₃OC), 190.4 (*C*=O); HRMS (EI): *m/z* calcd for C₂₅H₂₆N₄O₃ [M], 430.2005; found, 430.2000.

(Z)-4-(2-(1,3-Diazepan-2-ylidene)-3-oxo-3-*p*-tolylpropylidene)-3-methyl-1-phenyl-1*H*-pyrazol-5(4*H*)-one (8b)

Saffron yellow solid; Mp 263–265 °C; IR (KBr): 3281, 2922, 1633, 1499, 1352, 1273, 1142, 1001, 790, 750 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 1.82-1.87$ (m, 4H, CH₂CH₂), 2.19 (s, 3H, CH₃), 2.35 (s, 3H, ArCH₃), 3.39–3.43 (m, 4H, NCH₂CH₂N), 7.21 (s, 1H, CH), 7.27–7.37 (m, 3H, ArH), 7.46–7.49 (m, 3H, ArH), 7.54–7.57 (m, 3H, ArH), 9.27 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 11.0$ (*C*H₃), 21.1 (PhCH₃), 25.9 (*C*H₂CH₂), 25.9 (*C*H₂CH₂), 43.6 (*NC*H₂), 43.6 (*C*H₂N), 99.8, 120.6, 122.7, 126.4, 129.0, 129.1, 129.3, 135.0, 135.4, 139.0, 142.5, 150.6, 158.5 (HN*C*=), 164.0 (*NC*=O), 192.6 (*C*=O); HRMS (EI): *m*/*z* calcd for C₂₅H₂₆N₄O₂ [M], 414.2056; found, 414.2053.

(Z)-4-(2-(1,3-Diazepan-2-ylidene)-3-oxo-3-phenylpropylidene)-3-methyl-1-phenyl -1*H*-pyrazol-5(4*H*)-one (8c)

Saffron yellow solid; Mp 223–227 °C; IR (KBr): 3274, 2926, 1633, 1499, 1341, 1268, 1138, 997, 805, 750 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.86-1.93$ (m, 4H, CH₂CH₂), 1.92 (s, 3H, CH₃), 3.17 (m, 2H, NCH₂), 3.49 (m, 2H, NCH₂), 7.07–7.11 (m, 1H, ArH), 7.26 (s, 1H, CH), 7.31–7.39 (m, 4H, ArH), 7.43–7.46 (m, 1H, ArH), 7.51–7.52 (m, 2H, ArH), 7.76–7.78 (m, 2H, ArH); ¹³C NMR (100 MHz, CDCl₃): $\delta = 12.9$ (CH₃), 26.4 (CH₂CH₂), 26.4 (CH₂CH₂), 44.8 (NCH₂), 44.8 (CH₂N), 104.2, 109.5, 119.9, 124.5, 128.2, 128.6, 128.8, 131.2, 138.8, 140.1, 145.9, 151.5, 162.8 (HN*C*=), 166.6 (N*C*=O), 195.6 (*C*=O); HRMS (EI): *m*/*z* calcd for C₂₄H₂₄N₄O₂ [M], 400.1899; found, 400.1908.

(Z)-4-(3-(4-Chlorophenyl)-2-(1,3-diazepan-2-ylidene)-3-oxopropylidene)-3-methy

l-1-phenyl-1*H*-pyrazol-5(4*H*)-one (8d)

Saffron yellow solid; Mp 275–279 °C; IR (KBr): 3279, 2918, 1633, 1591, 1498, 1345, 1272, 1142, 1091, 933, 837, 747 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.82–1.86 (m, 4H, CH₂CH₂), 2.21 (s, 3H, CH₃), 3.40–3.45 (m, 4H, NCH₂CH₂N), 7.22 (s, 1H, CH), 7.26–7.30 (m, 1H, ArH), 7.46–7.49 (m, 2H, ArH), 7.56–7.58 (m, 4H, ArH), 7.63–7.65 (m, 2H, ArH), 9.29 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 11.1 (*C*H₃), 25.8 (*C*H₂CH₂), 26.0 (*C*H₂*C*H₂), 43.6 (*NC*H₂), 43.6 (*C*H₂N), 99.9, 120.6, 121.9, 126.3, 128.6, 129.3, 130.7, 135.4, 136.6, 136.8, 139.6, 150.8, 158.6 (HN*C*=), 163.9 (*NC*=O), 191.7 (*C*=O); HRMS (EI): *m*/*z* calcd for C₂₄H₂₃ClN₄O₂ [M], 434.1510; found, 434.1524.

(Z)-4-(3-(2-Chlorophenyl)-2-(1,3-diazepan-2-ylidene)-3-oxopropylidene)-3-methy l-1-phenyl-1*H*-pyrazol-5(4*H*)-one (8e)

Saffron yellow solid; Mp 244–249 °C; IR (KBr): 3317, 2922, 1635, 1581, 1504, 1443, 1349, 1283, 1146, 1055, 993, 750 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 1.76–1.96 (m, 7H, CH₃ and CH₂CH₂), 3.38–3.41 (m, 4H, NCH₂CH₂N), 6.99–7.02 (m, 1H, ArH), 7.29–7.32 (m, 2H, ArH), 7.38 (s, 1H, CH), 7.41–7.42 (m, 3H, ArH), 7.49 (m, 1H, ArH), 7.98–7.99 (m, 2H, ArH), 8.83 (br, 2H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 13.2 (CH₃), 26.4 (CH₂CH₂), 26.4 (CH₂CH₂), 43.4 (NCH₂), 43.4 (CH₂N), 102.7, 111.1, 117.7, 122.7, 127.1, 128.1, 128.7, 129.3, 129.7, 130.0, 130.4, 140.7, 141.4, 149.9, 163.3 (HNC=), 166.3 (NC=O), 188.7 (C=O); HRMS (EI): *m/z* calcd for C₂₄H₂₃ClN₄O₂ [M], 434.1510; found, 434.1502.

(Z)-4-(2-(1,3-Diazepan-2-ylidene)-3-(4-methoxyphenyl)-3-oxopropylidene)-1-phe nyl-3-(trifluoromethyl)-1*H*-pyrazol-5(4*H*)-one (8f)

Saffron yellow solid; Mp 288–290.5 °C; IR (KBr): 3305, 2926, 1635, 1595, 1500, 1396, 1289, 1262, 1173, 1115, 1019, 982, 841, 754 cm⁻¹; ¹H NMR (400 MHz,

DMSO-*d*₆): δ = 1.85 (m, 4H, 2CH₂), 3.44 (m, 4H, 2CH₂), 3.79 (s, 3H, OCH₃), 7.00–7.02 (m, 2H, ArH), 7.11–7.15 (m, 1H, ArH), 7.32 (s, 1H, CH), 7.36–7.39 (m, 2H, ArH), 7.51–7.53 (m, 2H, ArH), 7.92–7.94 (m, 2H, ArH), 9.025 (s, 2H, NH); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 26.2 (*C*H₂CH₂), 26.2 (*C*H₂*C*H₂), 43.2 (*NC*H₂), 43.2 (*C*H₂N), 55.4 (*OC*H₃), 95.3, 113.4, 115.9, 118.8, 120.6 (d, *J* = 268.7 Hz), 124.2, 128.7, 130.6, 131.6, 139.1, 139.3, 139.7, 161.5, 161.9 (HN*C*=), 165.7 (*NC*=O), 191.6 (*C*=O); HRMS (EI): *m/z* calcd for C₂₅H₂₃F₃N₄O₃ [M], 484.1722; found, 484.1727.

(Z)-4-(2-(1,3-Diazepan-2-ylidene)-3-oxo-3-p-tolylpropylidene)-1-phenyl-3-(trifluo romethyl)-1*H*-pyrazol-5(4*H*)-one (8g)

Saffron yellow solid; Mp 298–300 °C; IR (KBr): 3300, 2929, 1636, 1498, 1396, 1285, 1178, 1115, 986, 834, 755 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 1.85–1.90 (m, 4H, CH₂CH₂), 2.38 (s, 3H, ArCH₃), 3.42–3.48 (m, 4H, NCH₂CH₂N), 7.14–7.17 (m, 1H, ArH), 7.29–7.31 (m, 2H, ArH), 7.37–7.42 (m, 4H, CH and ArH), 7.45–7.47 (m, 1H, ArH), 7.98–7.99 (m, 2H, ArH), 9.08 (br, 2H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 21.4 (CH₃), 26.6 (CH₂CH₂), 26.6 (CH₂CH₂), 43.6 (NCH₂), 43.6 (CH₂N), 95.8, 116.1, 119.0, 120.9, 123.0, 124.4, 128.7, 128.9, 137.2, 139.6, 140.1, 141.0, 162.0, 162.3 (HN*C*=), 166.1 (N*C*=O), 192.5 (*C*=O); HRMS (EI): *m*/*z* calcd for C₂₅H₂₃F₃N₄O₂ [M], 468.1773; found, 468.1767.

(Z)-4-(2-(1,3-Diazepan-2-ylidene)-3-oxo-3-phenylpropylidene)-1-phenyl-3-(trifluo romethyl)-1*H*-pyrazol-5(4*H*)-one (8h)

Saffron yellow solid; Mp 267–272 °C; IR (KBr): 3305, 3023, 1640, 1537, 1499, 1396, 1286, 1178, 1116, 986, 827, 689 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 1.81–1.85 (m, 4H, NCH₂CH₂N), 3.39–3.50 (m, 4H, NCH₂CH₂N), 7.11–7.15 (m, 1H, ArH), 7.32 (s, 1H, CH), 7.36–7.39 (m, 3H, ArH), 7.45–7.54 (m, 4H, ArH), 7.93–7.95 (m, 2H, ArH), 9.08 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO- d_6): δ = 26.2 (*C*H₂CH₂), 26.2 (*C*H₂*C*H₂), 43.2 (*NC*H₂), 43.2 (*C*H₂N), 95.6, 115.6, 118.7, 120.2, 124.2, 128.0, 128.1, 128.7, 130.7, 139.5, 139.6, 139.7, 161.9 (HN*C*=), 165.5 (N*C*=O), 192.5 (*C*=O); HRMS (EI): *m/z* calcd for C₂₄H₂₁F₃N₄O2 [M], 454.1617; found, 454.1611.

(Z)-4-(3-(4-Chlorophenyl)-2-(1,3-diazepan-2-ylidene)-3-oxopropylidene)-1-phenyl -3-(trifluoromethyl)-1*H*-pyrazol-5(4*H*)-one (8i)

Saffron yellow solid; Mp 291–294 °C; IR (KBr): 3300, 3023, 1635, 1591, 1498, 1396, 1288, 1179, 1117, 986, 834, 750 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.81–1.85 (m, 4H, CH₂CH₂), 3.41–3.60 (m, 4H, NCH₂CH₂N), 7.11–7.15 (m, 1H, ArH), 7.29 (s, 1H, CH), 7.36–7.39 (m, 2H, ArH), 7.49–7.52 (m, 2H, ArH), 7.54–7.57 (m, 2H, ArH), 7.90–7.94 (m, 2H, ArH), 9.09 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 26.2 (*C*H₂CH₂), 26.2 (CH₂CH₂), 43.2 (NCH₂), 43.2 (*C*H₂N), 95.9, 115.2, 118.8, 121.5 (d, *J* = 268.8 Hz), 124.3, 128.3, 128.7, 129.9, 135.4, 138.4, 139.3, 139.5, 139.7, 161.9, 165.3(HNC=), 165.3 (NC=O), 919.1 (*C*=O); HRMS (EI): *m/z* calcd for C₂₄H₂₀ClF₃N₄O₂ [M], 488.1227; found, 488.1227.

(Z)-4-(3-(2-Chlorophenyl)-2-(1,3-diazepan-2-ylidene)-3-oxopropylidene)-1-phenyl -3-(trifluoromethyl)-1*H*-pyrazol-5(4*H*)-one (8j)

Saffron yellow solid; Mp 298–302 °C; IR (KBr): 3333, 2947, 1640, 1592, 1540, 1500, 1180, 1113, 982, 827, 758 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.80–1.90 (m, 4H, CH₂CH₂), 3.50–3.55 (m, 4H, NCH₂CH₂N), 7.07 (s, 1H, CH), 7.11–7.15 (m, 1H, ArH), 7.36–7.48 (m, 5H, ArH), 7.51–7.53 (m, 1H, ArH), 7.90–7.92 (m, 2H, ArH), 9.04 (br, 2H, NH); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 26.1 (CH₂CH₂), 26.1 (CH₂CH₂), 43.0 (NCH₂), 43.0 (CH₂N), 95.9, 106.5, 115.8, 118.8, 121.2 (d, *J* = 268.7 Hz), 124.3, 125.3, 126.9, 128.7, 128.8, 129.5, 129.6, 130.6, 139.1–140.0 (m), 139.3, 161.9 (HNC=), 164.4 (NC=O), 190.5 (C=O); HRMS (TOF ES⁺): *m/z* calcd for C₂₄H₂₀ClF₃N₄O₂[(M+H)⁺], 489.1300; found, 489.1300.

X-ray Structure and Data² of 6c

Figure S1 X-Ray crystal structure of 6c

Identification code	120910b		
Empirical formula			
	$C_{22} \Pi_{20} \Pi_4 O_2$		
Formula weight	572.42		
Temperature	298(2) K		
Wavelength	0.71073 Å		
Crystal system, space group	Monoclinic, P2(1)/c		
Unit cell dimensions	a = 21.059(3) A alpha = 90.00 deg.		
	b = 11.2828(16) A beta = 95.888(2) deg.		
	c = 15.679(2) A gamma = 90.00 deg.		
Volume	3705.6(9) A^3		
Z, Calculated density	8, 1.335 Mg/m^3		
Absorption coefficient	0.088 mm^-1		
F(000)	1568		
Crystal size	0.25 x 0.19 x 0.13 mm		
Theta range for data collection	1.94 to 25.00 deg.		
Limiting indices	-25<=h<=17, -13<=k<=13, -18<=l<=18		
Reflection collected/unique	26082 / 9253 [R(int) = 0.0347]		
Completeness to theta $= 28.40$	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9886 and 0.9783		
Refinement method	SHELXL		
Data/restraints/parameters	6533 / 0 / 508		
Goodness-of-fit on F^2	0.907		
Final R indices [I>2sigma(I)]	R1 = 0.1247, wR2 = 0.1373		
R indices (all data)	R1 = 0.0525, $wR2 = 0.1139$		
Extinction coefficient	0.0023(4)		
Extinction coefficient	0.0023(4)		

Table S1 Crystal data and structure refinement for 6c

N(1)-C(1) $1.323(3)$ N(1)-C(2) $1.443(3)$ N(1)-H(1) 0.8600 N(2)-C(3) $1.446(3)$ N(2)-H(2) 0.8600 N(3)-C(14) $1.372(3)$ N(3)-N(4) $1.406(3)$ N(3)-C(15) $1.416(3)$ N(4)-C(21) $1.289(3)$ N(5)-C(23) $1.317(3)$ N(5)-C(24) $1.444(3)$ N(5)-F(5) 0.8600 N(6)-C(25) $1.462(3)$ N(6)-C(25) $1.462(3)$ N(6)-F(6) 0.8600 N(7)-C(36) $1.375(3)$ N(7)-N(8) $1.400(3)$ N(7)-C(37) $1.408(3)$ N(7)-C(37) $1.408(3)$ N(8)-C(43) $1.296(3)$ O(1)-C(5) $1.246(3)$ O(2)-C(14) $1.41(3)$ C(2)-C(3) $1.515(3)$ C(2)-C(4) $1.441(3)$ C(2)-C(3) $1.515(3)$ C(2)-H(2B) 0.9700 C(3)-H(3B) 0.9700 C(3)-H(3B) 0.9700 C(4)-C(12) $1.400(3)$ C(4)-C(12) $1.378(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(7) $1.374(4)$ C(8)-H(8) 0.9300 <tr< th=""><th>Tuble DE Dona longuis [11] una ungles</th><th></th></tr<>	Tuble DE Dona longuis [11] una ungles	
N(1)-C(2) $1.443(3)$ N(1)-H(1)0.8600N(2)-C(1)1.306(3)N(2)-C(3)1.446(3)N(2)-H(2)0.8600N(3)-C(14)1.372(3)N(3)-N(4)1.406(3)N(3)-C(15)1.416(3)N(4)-C(21)1.289(3)N(5)-C(23)1.317(3)N(5)-C(24)1.444(3)N(5)-H(5)0.8600N(6)-C(23)1.305(3)N(6)-C(23)1.305(3)N(6)-C(23)1.305(3)N(6)-C(23)1.408(3)N(6)-C(3)1.400(3)N(7)-C(36)1.375(3)N(7)-N(8)1.400(3)N(7)-C(36)1.375(3)N(7)-N(8)1.408(3)N(8)-C(43)1.296(3)O(1)-C(5)1.246(3)O(2)-C(14)1.246(3)O(2)-C(14)1.246(3)O(2)-C(14)1.227(3)O(4)C(36)1.253(3)C(1)-C(4)1.441(3)C(2)-H(2A)0.9700C(2)-H(2A)0.9700C(2)-H(2A)0.9700C(2)-H(2A)0.9700C(3)-H(3A)0.9700C(4)-C(5)1.450(3)C(6)-C(7)1.378(3)C(6)-C(7)1.378(3)C(6)-C(7)1.378(3)C(6)-C(11)1.369(4)C(10)-H(10)0.9300C(10)-H(10)0.9300C(10)-H(11)0.9300C(10)-H(11)0.9300C(11)-H(11)0.9300C(12)-C(13)1.392(3)C(13)-C(14)1.436(3)C(15)-C(16)1.374(3)	N(1)-C(1)	1.323(3)
N(1)-H(1) 0.8600 N(2)-C(1) $1.306(3)$ N(2)-C(3) $1.446(3)$ N(2)-H(2) 0.8600 N(3)-C(14) $1.372(3)$ N(3)-N(4) $1.406(3)$ N(3)-C(15) $1.416(3)$ N(4)-C(21) $1.289(3)$ N(5)-C(23) $1.317(3)$ N(5)-C(24) $1.444(3)$ N(5)-C(25) $1.462(3)$ N(6)-C(25) $1.462(3)$ N(6)-C(25) $1.442(3)$ N(6)-C(25) $1.462(3)$ N(7)-C(36) $1.375(3)$ N(7)-C(37) $1.408(3)$ N(7)-C(37) $1.408(3)$ N(8)-C(43) $1.296(3)$ O(1)-C(5) $1.246(3)$ O(2)-C(14) $1.246(3)$ O(2)-C(14) $1.246(3)$ O(4)-C(5) $1.253(3)$ C(1)-C(4) $1.441(3)$ C(2)-C(3) $1.515(3)$ C(2)-H(2B) 0.9700 C(3)-H(3A) 0.9700 C(3)-H(3A) 0.9700 C(3)-H(3B) 0.9700 C(3)-H(3B) 0.9700 C(3)-H(3B) 0.9700 C(4)-C(12) $1.450(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(7) $1.357(4)$ C(9)-H(9) 0.9300 C(1)-H(10) 0.9300 C(1)-H(11) 0.9300 C(1)-H(11) 0.9300 C(1)-H(11) 0.9300 C(1)-H(11) 0.9300 C(1)-H(11) 0.9300 C(1)-H(12) 0.9300 C(1)-H(11) $1.352(4)$	N(1)-C(2)	1.443(3)
N(2)-C(1) $1.306(3)$ N(2)-H(2)0.8600N(3)-C(14) $1.372(3)$ N(3)-C(14) $1.372(3)$ N(3)-C(15) $1.416(3)$ N(4)-C(21) $1.289(3)$ N(5)-C(23) $1.317(3)$ N(5)-C(24) $1.444(3)$ N(5)-C(23) $1.305(3)$ N(6)-C(23) $1.305(3)$ N(6)-C(23) $1.305(3)$ N(6)-C(25) $1.462(3)$ N(6)-C(25) $1.462(3)$ N(7)-C(36) $1.375(3)$ N(7)-C(36) $1.375(3)$ N(7)-C(37) $1.408(3)$ N(8)-C(43) $1.296(3)$ O(1)-C(5) $1.246(3)$ O(2)-C(14) $1.246(3)$ O(3)C(27) $1.227(3)$ O(4)C(36) $1.253(3)$ C(1)-C(4) $1.441(3)$ C(2)-H(2A) 0.9700 C(2)-H(2A) 0.9700 C(2)-H(2A) 0.9700 C(3)-H(3A) 0.9700 C(3)-H(3A) 0.9700 C(3)-H(3A) 0.9700 C(3)-H(3A) 0.9700 C(4)-C(5) $1.450(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(11) $1.380(3)$ C(7)-H(7) 0.9300 C(7)-H(7) 0.9300 C(9)-C(10) $1.357(4)$ C(9)-H(10) 0.9300 C(10)-H(10) 0.9300 C(10)-H(11) 0.9300 C(11)-H(11) 0.9300 C(12)-H(12) 0.9300 C(12)-H(12) 0.9300 C(12)-H(12) 0.9300 C(12)-H(12) 0.9300 C(12)-H(12) 0.9300 C(1	N(1)-H(1)	0.8600
N(2)-C(3) $1.446(3)$ N(2)-H(2)0.8600N(3)-C(14) $1.372(3)$ N(3)-N(4) $1.406(3)$ N(3)-C(15) $1.416(3)$ N(4)-C(21) $1.289(3)$ N(5)-C(23) $1.317(3)$ N(5)-C(24) $1.444(3)$ N(5)-F(5) 0.8600 N(6)-C(25) $1.462(3)$ N(6)-C(25) $1.462(3)$ N(6)-C(25) $1.462(3)$ N(6)-C(25) $1.462(3)$ N(7)-N(8) $1.400(3)$ N(7)-N(8) $1.400(3)$ N(7)-C(37) $1.408(3)$ N(7)-N(8) $1.400(3)$ O(1)-C(5) $1.246(3)$ O(2)-C(14) $1.246(3)$ O(2)-C(14) $1.246(3)$ O(3)C(27) $1.257(3)$ O(4)C(26) $1.253(3)$ C(1)-C(4) $1.441(3)$ C(2)-H(2A) 0.9700 C(2)-H(2B) 0.9700 C(3)-H(3A) 0.9700 C(3)-H(3A) 0.9700 C(4)-C(5) $1.450(3)$ C(5)-C(6) $1.489(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(11) $1.360(3)$ C(7)-H(7) 0.9300 C(1)-H(10) 0.9300 C(1)-H(10) 0.9300 C(1)-H(11) 0.9300 C(1)-H(11) 0.9300 C(1)-H(11) 0.9300 C(1)-H(12) 0.9300 C(1)-H(11) 0.9300 C(1)-H(11) 0.9300 C(1)-H(12) 0.9300 C(1)-H(11) <td>N(2)-C(1)</td> <td>1.306(3)</td>	N(2)-C(1)	1.306(3)
N(2)-H(2) 0.8600 N(3)-C(14) $1.372(3)$ N(3)-C(15) $1.416(3)$ N(3)-C(15) $1.416(3)$ N(4)-C(21) $1.289(3)$ N(5)-C(23) $1.317(3)$ N(5)-C(24) $1.444(3)$ N(5)-H(5) 0.8600 N(6)-C(25) $1.462(3)$ N(6)-H(6) 0.8800 N(6)-C(25) $1.462(3)$ N(6)-H(6) 0.8600 N(7)-C(35) $1.375(3)$ N(7)-C(37) $1.408(3)$ N(7)-C(37) $1.408(3)$ N(8)-C(43) $1.296(3)$ O(1)-C(5) $1.246(3)$ O(2)-C(14) $1.246(3)$ O(2)-C(14) $1.246(3)$ O(3)C(27) $1.227(3)$ O(4)C(36) $1.253(3)$ C(1)-C(4) $1.441(3)$ C(2)-H(2A) 0.9700 C(2)-H(2A) 0.9700 C(2)-H(2B) 0.9700 C(3)-H(3A) 0.9700 C(3)-H(3B) 0.9700 C(3)-H(3B) 0.9700 C(3)-H(3B) 0.9700 C(3)-H(3B) 0.9700 C(3)-H(3B) 0.9700 C(3)-H(3B) 0.9700 C(4)-C(5) $1.450(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(11) $1.369(3)$ C(6)-C(11) $1.357(4)$ C(9)-H(9) 0.9300 C(10)-H(10) 0.9300 C(11)-H(11) 0.9300 C(12)-H(12) 0.9300 C(12)-H(12) 0.9300 C(12)-H(12) 0.9300 C(12)-H(12) 0.9300 C(12)-H(12) 0.9300 C(12)-H(1	N(2)-C(3)	1.446(3)
N(3)-C(14) $1.372(3)$ N(3)-N(4) $1.406(3)$ N(3)-C(15) $1.416(3)$ N(4)-C(21) $1.289(3)$ N(5)-C(23) $1.317(3)$ N(5)-C(24) $1.444(3)$ N(5)-C(23) $1.305(3)$ N(6)-C(23) $1.305(3)$ N(6)-C(25) $1.462(3)$ N(6)-C(25) $1.462(3)$ N(7)-N(8) $1.408(3)$ N(7)-N(8) $1.408(3)$ N(7)-N(8) $1.296(3)$ O(1)-C(5) $1.246(3)$ O(2)-C(14) $1.246(3)$ O(3)C(27) $1.227(3)$ O(4)C(36) $1.253(3)$ C(1)-C(4) $1.414(3)$ C(2)-C(3) $1.515(3)$ C(2)-H(2A) 0.9700 C(3)-H(3B) 0.9700 C(3)-H(3B) 0.9700 C(4)-C(12) $1.450(3)$ C(4)-C(11) $1.380(3)$ C(7)-R(8) $1.359(3)$ C(6)-C(11) $1.359(3)$ C(7)-H(7) 0.9300 C(3)-H(3B) 0.9300 C(4)-C(5) $1.450(3)$ C(5)-C(6) $1.489(3)$ C(6)-C(11) $1.359(4)$ C(7)-H(7) 0.9300 C(7)-H(7) 0.9300 C(7)-H(7) 0.9300 C(10)-C(11) $1.359(4)$ C(10)-C(11) $1.359(4)$ C(10)-C(11) $1.359(4)$ C(10)-C(11) $1.359(4)$ C(10)-C(11) $1.358(3)$ C(12)-C(13) $1.392(3)$ C(12)-C(14) $1.436(3)$ C(13)-C(14) $1.436(3)$ C(15)-C(16) $1.374(3)$	N(2)-H(2)	0.8600
N(3)-N(4) $1.406(3)$ N(3)-C(15) $1.416(3)$ N(4)-C(21) $1.289(3)$ N(5)-C(23) $1.317(3)$ N(5)-C(24) $1.444(3)$ N(5)-C(25) $1.305(3)$ N(6)-C(25) $1.452(3)$ N(6)-C(25) $1.452(3)$ N(6)-C(25) $1.452(3)$ N(6)-H(6) 0.8600 N(7)-C(36) $1.375(3)$ N(7)-N(8) $1.400(3)$ N(7)-N(8) $1.400(3)$ N(7)-C(37) $1.408(3)$ N(8)-C(43) $1.296(3)$ O(1)-C(5) $1.246(3)$ O(2)-C(14) $1.244(3)$ O(3)C(27) $1.227(3)$ O(4)C(36) $1.253(3)$ C(1)-C(4) $1.441(3)$ C(2)-H(2A) 0.9700 C(3)-H(3A) 0.9700 C(3)-H(3B) 0.9700 C(3)-H(3B) 0.9700 C(4)-C(5) $1.450(3)$ C(5)-C(6) $1.489(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(11) $1.380(3)$ C(7)-C(8) $1.359(3)$ C(6)-C(11) $1.357(4)$ C(9)-H(9) 0.9300 C(10)-H(10) 0.9300 C(10)-C(11) $1.359(4)$ C(10)-C(11) $1.359(4)$ C(10)-H(10) 0.9300 C(11)-H(11) 0.9300 C(12)-C(13) $1.392(3)$ C(12)-C(14) $1.435(3)$ C(13)-C(14) $1.435(3)$ C(15)-C(16) $1.374(3)$ C(15)-C(16) $1.374(3)$	N(3)-C(14)	1.372(3)
N(3)-C(15) $1.416(3)$ N(4)-C(21) $1.289(3)$ N(5)-C(23) $1.317(3)$ N(5)-C(24) $1.444(3)$ N(5)-H(5) 0.8600 N(6)-C(23) $1.305(3)$ N(6)-C(25) $1.462(3)$ N(6)-C(25) $1.462(3)$ N(6)-H(6) 0.8600 N(7)-C(36) $1.375(3)$ N(7)-N(8) $1.400(3)$ N(7)-C(37) $1.408(3)$ N(8)-C(43) $1.296(3)$ O(1)-C(5) $1.246(3)$ O(2)-C(14) $1.246(3)$ O(2)-C(14) $1.246(3)$ O(2)-C(14) $1.245(3)$ C(2)-C(3) $1.515(3)$ C(2)-C(4) $1.441(3)$ C(2)-C(3) $1.515(3)$ C(2)-H(2A) 0.9700 C(2)-H(2A) 0.9700 C(3)-H(3A) 0.9700 C(3)-H(3A) 0.9700 C(3)-H(3A) 0.9700 C(3)-H(3B) 0.9700 C(4)-C(5) $1.450(3)$ C(6)-C(11) $1.380(3)$ C(6)-C(11) $1.380(3)$ C(7)-C(8) $1.369(3)$ C(7)-C(8) $1.369(3)$ C(7)-C(10) $1.357(4)$ C(8)-C(9) $1.371(4)$ C(8)-C(10) $1.357(4)$ C(10)-C(11) $1.369(4)$ C(10)-C(11) $1.369(4)$ C(10)-C(11) $1.359(3)$ C(12)-C(13) $1.392(3)$ C(12)-C(14) $1.436(3)$ C(13)-C(14) $1.436(3)$ C(15)-C(16) $1.374(3)$	N(3)-N(4)	1.406(3)
N(4)-C(21)1.289(3) $N(5)-C(23)$ 1.317(3) $N(5)-C(24)$ 1.444(3) $N(5)-C(23)$ 1.305(3) $N(6)-C(25)$ 1.462(3) $N(6)-C(25)$ 1.462(3) $N(6)-C(25)$ 1.462(3) $N(7)-N(8)$ 1.400(3) $N(7)-C(37)$ 1.408(3) $N(7)-C(37)$ 1.296(3) $O(1)-C(5)$ 1.246(3) $O(2)-C(14)$ 1.244(3) $O(3)C(27)$ 1.227(3) $O(4)C(36)$ 1.253(3) $C(1)-C(4)$ 1.414(3) $C(2)-C(3)$ 1.515(3) $C(2)-H(2A)$ 0.9700 $C(2)-H(2A)$ 0.9700 $C(3)-H(3A)$ 0.9700 $C(3)-H(3A)$ 0.9700 $C(3)-H(3A)$ 0.9700 $C(3)-H(3A)$ 0.9700 $C(4)-C(12)$ 1.400(3) $C(-C(7)$ 1.378(3) $C(6)-C(7)$ 1.378(3) $C(6)-C(11)$ 1.380(3) $C(7)-H(7)$ 0.9300 $C(3)-H(4B)$ 0.9300 $C(7)-H(7)$ 0.9300 $C(7)-H(7)$ 0.9300 $C(7)-H(7)$ 0.9300 $C(10)-H(10)$ 0.9300 $C(10)-H(10)$ 0.9300 $C(10)-H(10)$ 0.9300 $C(10)-H(11)$ 1.369(4) $C(10)-H(12)$ 0.9300 $C(12)-H(12)$ 0.9300 $C(13)-C(14)$ 1.436(3) $C(15)-C(16)$ 1.374(3) $C(16)-C(17)$ 1.372(4)	N(3)-C(15)	1.416(3)
N(5)-C(23) $1.317(3)$ N(5)-C(24) $1.444(3)$ N(5)-H(5) 0.8600 N(6)-C(25) $1.305(3)$ N(6)-C(25) $1.462(3)$ N(6)-H(6) 0.8600 N(7)-C(36) $1.375(3)$ N(7)-N(8) $1.400(3)$ N(7)-C(37) $1.408(3)$ N(7)-C(37) $1.408(3)$ N(8)-C(43) $1.296(3)$ O(1)-C(5) $1.246(3)$ O(2)-C(14) $1.246(3)$ O(3)C(27) $1.227(3)$ O(4)C(36) $1.253(3)$ C(1)-C(4) $1.441(3)$ C(2)-H(2A) 0.9700 C(2)-H(2B) 0.9700 C(2)-H(2B) 0.9700 C(3)-H(3A) 0.9700 C(3)-H(3A) 0.9700 C(3)-H(3A) 0.9700 C(4)-C(5) $1.489(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(11) $1.380(3)$ C(7)-H(7) 0.9300 C(8)-C(9) $1.371(4)$ C(8)-H(8) 0.9300 C(10)-H(10) 0.9300 C(10)-H(10) 0.9300 C(10)-C(11) $1.369(4)$ C(10)-H(10) 0.9300 C(10)-H(10) 0.9300 C(10)-H(10) 0.9300 C(11)-H(11) 0.9300 C(12)-H(12) 0.9300 C(12)-H(12) 0.9300 C(13)-C(14) $1.436(3)$ C(15)-C(16) $1.374(3)$ C(15)-C(16) $1.374(3)$ C	N(4)-C(21)	1.289(3)
N(5)-C(24) $1.444(3)$ N(5)-H(5) 0.8600 N(6)-C(23) $1.305(3)$ N(6)-C(25) $1.462(3)$ N(6)-H(6) 0.8600 N(7)-C(36) $1.375(3)$ N(7)-N(8) $1.400(3)$ N(7)-C(37) $1.408(3)$ N(8)-C(43) $1.296(3)$ O(1)-C(5) $1.246(3)$ O(2)-C(14) $1.246(3)$ O(2)-C(14) $1.246(3)$ O(3)C(27) $1.227(3)$ O(4)C(36) $1.253(3)$ C(1)-C(4) $1.441(3)$ C(2)-C(3) $1.515(3)$ C(2)-H(2A) 0.9700 C(3)-H(3A) 0.9700 C(3)-H(3A) 0.9700 C(4)-C(12) $1.400(3)$ C(4)-C(5) $1.450(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(7) $1.359(3)$ C(7)-C(8) $1.369(3)$ C(7)-H(7) 0.9300 C(8)-C(9) $1.371(4)$ C(8)-H(8) 0.9300 C(10)-C(11) $1.369(4)$ C(10)-C(11) $1.369(4)$ C(10)-C(11) $1.369(4)$ C(10)-C(11) $1.369(4)$ C(10)-C(11) $1.392(3)$ C(12)-H(12) 0.9300 C(12)-H(12) 0.9300 C(12)-H(12) 0.9300 C(12)-H(12) 0.9300 C(12)-H(12) 0.9300 C(13)-C(14) $1.435(3)$ C(15)-C(16) $1.374(3)$ C(15)-C(16) $1.374(3)$ C(16)-C(17) $1.372(4)$	N(5)-C(23)	1.317(3)
N(5)-H(5) 0.8600 N(6)-C(23) $1.305(3)$ N(6)-C(25) $1.462(3)$ N(6)-H(6) 0.8600 N(7)-C(36) $1.375(3)$ N(7)-N(8) $1.400(3)$ N(7)-C(37) $1.408(3)$ N(8)-C(43) $1.296(3)$ O(1)-C(5) $1.246(3)$ O(2)-C(14) $1.246(3)$ O(3)C(27) $1.227(3)$ O(4)-C(5) $1.245(3)$ C(2)-C(3) $1.515(3)$ C(1)-C(4) $1.441(3)$ C(2)-C(3) $1.515(3)$ C(2)-H(2A) 0.9700 C(3)-H(3A) 0.9700 C(3)-H(3B) 0.9700 C(4)-C(12) $1.400(3)$ C(4)-C(5) $1.450(3)$ C(5)-C(6) $1.489(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(7) $1.357(4)$ C(8)-C(9) $1.371(4)$ C(8)-C(9) $1.371(4)$ C(8)-C(11) $1.369(4)$ C(10)-C(11) $1.369(4)$ C(10)-C(11) $1.357(4)$ C(10)-C(11) $1.358(3)$ C(12)-F(12) 0.9300 C(12)-F(12) 0.9300 C(12)-F(12) 0.9300 C(12)-F(12) $1.338(3)$ C(15)-C(16) $1.374(3)$ C(15)-C(16) $1.374(3)$ C(16)-C(17) 1.3	N(5)-C(24)	1.444(3)
N(6)-C(23) $1.305(3)$ N(6)-C(25) $1.462(3)$ N(6)-H(6) 0.8600 N(7)-C(36) $1.375(3)$ N(7)-N(8) $1.400(3)$ N(7)-N(8) $1.400(3)$ N(7)-C(37) $1.408(3)$ N(8)-C(43) $1.296(3)$ O(1)-C(5) $1.246(3)$ O(2)-C(14) $1.246(3)$ O(3)-C(27) $1.227(3)$ O(4)C(36) $1.253(3)$ C(1)-C(4) $1.441(3)$ C(2)-C(3) $1.515(3)$ C(2)-H(2A) 0.9700 C(3)-H(3A) 0.9700 C(3)-H(3B) 0.9700 C(3)-H(3B) 0.9700 C(3)-H(3B) 0.9700 C(4)-C(12) $1.400(3)$ C(4)-C(5) $1.450(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(11) $1.380(3)$ C(7)-C(8) $1.369(3)$ C(7)-C(8) $1.369(3)$ C(7)-C(8) $1.357(4)$ C(9)-H(10) 0.9300 C(9)-C(10) $1.357(4)$ C(9)-H(10) 0.9300 C(1)-H(11) 0.9300 C(1)-H(11) 0.9300 C(12)-C(13) $1.392(3)$ C(12)-C(14) $1.435(3)$ C(13)-C(14) $1.435(3)$ C(15)-C(16) $1.374(3)$ C(15)-C(16) $1.374(3)$ C(15)-C(16) $1.372(4)$	N(5)-H(5)	0.8600
N(6)-C(25) $1.462(3)$ N(6)-H(6) 0.8600 N(7)-C(36) $1.375(3)$ N(7)-N(8) $1.400(3)$ N(7)-C(37) $1.408(3)$ N(8)-C(43) $1.296(3)$ O(1)-C(5) $1.246(3)$ O(2)-C(14) $1.246(3)$ O(3)C(27) $1.227(3)$ O(4)C(36) $1.253(3)$ C(1)-C(4) $1.441(3)$ C(2)-C(3) $1.515(3)$ C(2)-H(2A) 0.9700 C(3)-H(2B) 0.9700 C(3)-H(3A) 0.9700 C(3)-H(3B) 0.9700 C(3)-H(3B) 0.9700 C(4)-C(5) $1.450(3)$ C(5)-C(6) $1.489(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(11) $1.360(3)$ C(7)-H(7) 0.9300 C(8)-C(9) $1.371(4)$ C(8)-H(8) 0.9300 C(9)-C(10) $1.357(4)$ C(9)-H(10) 0.9300 C(10)-C(11) $1.369(4)$ C(10)-H(11) 0.9300 C(11)-H(11) 0.9300 C(12)-C(13) $1.392(3)$ C(12)-C(14) $1.435(3)$ C(13)-C(14) $1.435(3)$ C(13)-C(14) $1.435(3)$ C(15)-C(16) $1.374(3)$ C(15)-C(16) $1.374(3)$ C(15)-C(20) $1.388(3)$ C(16)-C(17) $1.372(4)$	N(6)-C(23)	1.305(3)
N(6)-H(6) 0.8600 N(7)-C(36) $1.375(3)$ N(7)-N(8) $1.400(3)$ N(7)-C(37) $1.408(3)$ N(8)-C(43) $1.296(3)$ O(1)-C(5) $1.246(3)$ O(2)-C(14) $1.246(3)$ O(3)C(27) $1.227(3)$ O(4)C(36) $1.253(3)$ C(1)-C(4) $1.441(3)$ C(2)-C(3) $1.515(3)$ C(2)-H(2A) 0.9700 C(2)-H(2B) 0.9700 C(3)-H(3A) 0.9700 C(3)-H(3B) 0.9700 C(3)-H(3B) 0.9700 C(4)-C(12) $1.400(3)$ C(4)-C(5) $1.450(3)$ C(5)-C(6) $1.489(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(11) $1.380(3)$ C(7)-H(7) 0.9300 C(8)-H(8) 0.9300 C(9)-H(9) 0.9300 C(10)-C(11) $1.369(4)$ C(10)-H(10) 0.9300 C(11)-H(11) 0.9300 C(12)-C(13) $1.392(3)$ C(12)-C(14) $1.435(3)$ C(13)-C(14) $1.435(3)$ C(13)-C(14) $1.435(3)$ C(15)-C(16) $1.374(3)$ C(15)-C(16) $1.372(4)$	N(6)-C(25)	1.462(3)
N(7)-C(36) $1.375(3)$ N(7)-N(8) $1.400(3)$ N(7)-C(37) $1.408(3)$ N(8)-C(43) $1.296(3)$ O(1)-C(5) $1.246(3)$ O(2)-C(14) $1.246(3)$ O(3)C(27) $1.227(3)$ O(4)C(36) $1.253(3)$ C(1)-C(4) $1.441(3)$ C(2)-C(3) $1.515(3)$ C(2)-H(2A) 0.9700 C(2)-H(2B) 0.9700 C(3)-H(3A) 0.9700 C(3)-H(3B) 0.9700 C(3)-H(3B) 0.9700 C(4)-C(5) $1.450(3)$ C(4)-C(5) $1.450(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(11) $1.380(3)$ C(7)-C(8) $1.369(3)$ C(7)-H(7) 0.9300 C(8)-C(9) $1.371(4)$ C(8)-H(8) 0.9300 C(10)-C(11) $1.369(4)$ C(10)-H(10) 0.9300 C(11)-H(11) 0.9300 C(11)-H(11) 0.9300 C(11)-H(11) 0.9300 C(12)-C(13) $1.392(3)$ C(12)-C(14) $1.435(3)$ C(15)-C(15) $1.374(3)$ C(15)-C(16) $1.374(3)$ C(15)-C(16) $1.372(4)$	N(6)-H(6)	0.8600
N(7)-N(8) $1.400(3)$ N(7)-C(37) $1.408(3)$ N(8)-C(43) $1.296(3)$ O(1)-C(5) $1.246(3)$ O(2)-C(14) $1.246(3)$ O(3)C(27) $1.227(3)$ O(4)C(36) $1.253(3)$ C(1)-C(4) $1.441(3)$ C(2)-C(3) $1.515(3)$ C(2)-H(2A) 0.9700 C(2)-H(2B) 0.9700 C(3)-H(3B) 0.9700 C(3)-H(3B) 0.9700 C(4)-C(12) $1.440(3)$ C(5)-C(6) $1.489(3)$ C(5)-C(6) $1.489(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(7) $1.378(3)$ C(7)-F(8) $1.369(3)$ C(7)-H(7) 0.9300 C(8)-C(9) $1.371(4)$ C(8)-H(8) 0.9300 C(10)-C(11) $1.369(4)$ C(10)-C(11) $1.369(4)$ C(10)-H(10) 0.9300 C(11)-H(11) 0.9300 C(12)-C(13) $1.392(3)$ C(13)-C(21) $1.435(3)$ C(13)-C(14) $1.435(3)$ C(15)-C(16) $1.374(3)$ C(15)-C(16) $1.374(3)$ C(16)-C(17) $1.372(4)$	N(7)-C(36)	1.375(3)
N(7)-C(37)1.408(3) $N(8)$ -C(43)1.296(3) $O(1)$ -C(5)1.246(3) $O(2)$ -C(14)1.246(3) $O(3)$ C(27)1.227(3) $O(4)$ C(36)1.253(3) $C(1)$ -C(4)1.441(3) $C(2)$ -C(3)1.515(3) $C(2)$ -H(2A)0.9700 $C(2)$ -H(2B)0.9700 $C(3)$ -H(3A)0.9700 $C(3)$ -H(3B)0.9700 $C(3)$ -H(3B)0.9700 $C(4)$ -C(12)1.400(3) $C(4)$ -C(5)1.450(3) $C(5)$ -C(6)1.489(3) $C(6)$ -C(7)1.378(3) $C(6)$ -C(11)1.380(3) $C(7)$ -C(8)1.369(3) $C(7)$ -C(8)1.369(3) $C(7)$ -H(7)0.9300 $C(8)$ -C(9)1.371(4) $C(8)$ -H(8)0.9300 $C(10)$ -C(11)1.369(4) $C(10)$ -H(10)0.9300 $C(10)$ -H(11)0.9300 $C(12)$ -C(13)1.392(3) $C(13)$ -C(21)1.435(3) $C(13)$ -C(21)1.435(3) $C(13)$ -C(14)1.436(3) $C(15)$ -C(16)1.374(3) $C(16)$ -C(17)1.372(4)	N(7)-N(8)	1.400(3)
N(8)-C(43) $1.296(3)$ O(1)-C(5) $1.246(3)$ O(2)-C(14) $1.246(3)$ O(3)C(27) $1.227(3)$ O(4)C(36) $1.253(3)$ C(1)-C(4) $1.441(3)$ C(2)-C(3) $1.515(3)$ C(2)-H(2B) 0.9700 C(3)-H(3A) 0.9700 C(3)-H(3B) 0.9700 C(3)-H(3B) 0.9700 C(4)-C(12) $1.400(3)$ C(4)-C(5) $1.450(3)$ C(5)-C(6) $1.489(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(7) $1.378(3)$ C(6)-C(11) $1.380(3)$ C(7)-H(7) 0.9300 C(8)-C(9) $1.371(4)$ C(8)-H(8) 0.9300 C(9)-C(10) $1.357(4)$ C(9)-H(9) 0.9300 C(10)-C(11) $1.369(4)$ C(10)-H(10) 0.9300 C(11)-H(11) 0.9300 C(11)-H(12) 0.9300 C(13)-C(21) $1.435(3)$ C(13)-C(14) $1.436(3)$ C(15)-C(16) $1.374(3)$ C(15)-C(16) $1.374(3)$ C(16)-C(17) $1.372(4)$	N(7)-C(37)	1.408(3)
$\begin{array}{c cccc} O(1)-C(5) & 1.246(3) \\ O(2)-C(14) & 1.246(3) \\ O(3)C(27) & 1.227(3) \\ O(4)C(36) & 1.253(3) \\ C(1)-C(4) & 1.441(3) \\ C(2)-C(3) & 1.515(3) \\ C(2)-H(2A) & 0.9700 \\ C(2)-H(2B) & 0.9700 \\ C(3)-H(3A) & 0.9700 \\ C(3)-H(3B) & 0.9700 \\ C(3)-H(3B) & 0.9700 \\ C(4)-C(12) & 1.400(3) \\ C(4)-C(5) & 1.450(3) \\ C(4)-C(5) & 1.450(3) \\ C(5)-C(6) & 1.489(3) \\ C(6)-C(7) & 1.378(3) \\ C(6)-C(7) & 1.378(3) \\ C(6)-C(11) & 1.380(3) \\ C(7)-C(8) & 1.369(3) \\ C(7)-H(7) & 0.9300 \\ C(8)-C(9) & 1.371(4) \\ C(8)-H(8) & 0.9300 \\ C(9)-C(10) & 1.357(4) \\ C(9)-H(9) & 0.9300 \\ C(10)-C(11) & 1.369(4) \\ C(10)-H(10) & 0.9300 \\ C(10)-C(11) & 1.369(4) \\ C(10)-H(11) & 0.9300 \\ C(12)-C(13) & 1.392(3) \\ C(12)-C(13) & 1.392(3) \\ C(13)-C(14) & 1.436(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \\ \end{array}$	N(8)-C(43)	1.296(3)
$\begin{array}{c cccc} O(2)-C(14) & 1.246(3) \\ O(3)C(27) & 1.227(3) \\ O(4)C(36) & 1.253(3) \\ C(1)-C(4) & 1.441(3) \\ C(2)-C(3) & 1.515(3) \\ C(2)-H(2A) & 0.9700 \\ C(2)-H(2B) & 0.9700 \\ C(3)-H(3A) & 0.9700 \\ C(3)-H(3B) & 0.9700 \\ C(3)-H(3B) & 0.9700 \\ C(4)-C(12) & 1.400(3) \\ C(4)-C(5) & 1.450(3) \\ C(4)-C(5) & 1.450(3) \\ C(5)-C(6) & 1.489(3) \\ C(6)-C(7) & 1.378(3) \\ C(6)-C(7) & 1.378(3) \\ C(6)-C(7) & 1.378(3) \\ C(6)-C(11) & 1.380(3) \\ C(7)-C(8) & 1.369(3) \\ C(7)-C(8) & 1.369(3) \\ C(7)-C(8) & 1.357(4) \\ C(8)-H(8) & 0.9300 \\ C(8)-C(9) & 1.371(4) \\ C(8)-H(8) & 0.9300 \\ C(9)-C(10) & 1.357(4) \\ C(9)-H(9) & 0.9300 \\ C(10)-C(11) & 1.369(4) \\ C(10)-H(10) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(12)-C(13) & 1.392(3) \\ C(12)-C(14) & 1.435(3) \\ C(13)-C(14) & 1.436(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \\ \end{array}$	O(1)-C(5)	1.246(3)
$\begin{array}{c cccc} O(3)C(27) & 1.227(3) \\ O(4)C(36) & 1.253(3) \\ C(1)-C(4) & 1.441(3) \\ C(2)-C(3) & 1.515(3) \\ C(2)-H(2A) & 0.9700 \\ C(2)-H(2B) & 0.9700 \\ C(3)-H(3A) & 0.9700 \\ C(3)-H(3B) & 0.9700 \\ C(3)-H(3B) & 0.9700 \\ C(4)-C(12) & 1.400(3) \\ C(4)-C(5) & 1.450(3) \\ C(5)-C(6) & 1.489(3) \\ C(6)-C(7) & 1.378(3) \\ C(6)-C(7) & 1.378(3) \\ C(6)-C(7) & 1.378(3) \\ C(6)-C(11) & 1.380(3) \\ C(7)-C(8) & 1.369(3) \\ C(7)-C(8) & 1.369(3) \\ C(7)-H(7) & 0.9300 \\ C(8)-C(9) & 1.371(4) \\ C(8)-H(8) & 0.9300 \\ C(9)-C(10) & 1.357(4) \\ C(9)-H(9) & 0.9300 \\ C(10)-C(11) & 1.369(4) \\ C(10)-H(10) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(12)-C(13) & 1.392(3) \\ C(12)-C(13) & 1.392(3) \\ C(13)-C(14) & 1.436(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \\ \end{array}$	O(2)-C(14)	1.246(3)
$\begin{array}{c cccc} O(4)C(36) & 1.253(3) \\ C(1)-C(4) & 1.441(3) \\ C(2)-C(3) & 1.515(3) \\ C(2)-H(2A) & 0.9700 \\ C(2)-H(2B) & 0.9700 \\ C(3)-H(3A) & 0.9700 \\ C(3)-H(3B) & 0.9700 \\ C(4)-C(12) & 1.400(3) \\ C(4)-C(5) & 1.450(3) \\ C(5)-C(6) & 1.489(3) \\ C(6)-C(7) & 1.378(3) \\ C(6)-C(7) & 1.378(3) \\ C(6)-C(11) & 1.380(3) \\ C(7)-C(8) & 1.369(3) \\ C(7)-C(8) & 1.369(3) \\ C(7)-H(7) & 0.9300 \\ C(8)-C(9) & 1.371(4) \\ C(8)-H(8) & 0.9300 \\ C(9)-C(10) & 1.357(4) \\ C(9)-H(9) & 0.9300 \\ C(10)-C(11) & 1.369(4) \\ C(10)-C(11) & 1.369(4) \\ C(10)-H(10) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(12)-C(13) & 1.392(3) \\ C(12)-C(13) & 1.392(3) \\ C(13)-C(14) & 1.435(3) \\ C(15)-C(16) & 1.374(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \\ \end{array}$	O(3)C(27)	1.227(3)
$\begin{array}{ccccc} C(1)-C(4) & 1.441(3) \\ C(2)-C(3) & 1.515(3) \\ C(2)-H(2A) & 0.9700 \\ C(2)-H(2B) & 0.9700 \\ C(3)-H(3A) & 0.9700 \\ C(3)-H(3B) & 0.9700 \\ C(4)-C(12) & 1.400(3) \\ C(4)-C(5) & 1.450(3) \\ C(4)-C(5) & 1.450(3) \\ C(5)-C(6) & 1.489(3) \\ C(6)-C(7) & 1.378(3) \\ C(6)-C(7) & 1.378(3) \\ C(6)-C(11) & 1.380(3) \\ C(7)-C(8) & 1.369(3) \\ C(7)-C(8) & 1.369(3) \\ C(7)-H(7) & 0.9300 \\ C(8)-C(9) & 1.371(4) \\ C(8)-H(8) & 0.9300 \\ C(9)-C(10) & 1.357(4) \\ C(9)-H(9) & 0.9300 \\ C(10)-C(11) & 1.369(4) \\ C(10)-C(11) & 1.369(4) \\ C(10)-C(11) & 1.392(3) \\ C(12)-C(13) & 1.392(3) \\ C(12)-C(13) & 1.392(3) \\ C(13)-C(14) & 1.435(3) \\ C(15)-C(16) & 1.374(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \\ \end{array}$	O(4)C(36)	1.253(3)
$\begin{array}{cccc} C(2)-C(3) & 1.515(3) \\ C(2)-H(2A) & 0.9700 \\ C(2)-H(2B) & 0.9700 \\ C(3)-H(3A) & 0.9700 \\ C(3)-H(3B) & 0.9700 \\ C(4)-C(12) & 1.400(3) \\ C(4)-C(5) & 1.450(3) \\ C(5)-C(6) & 1.489(3) \\ C(5)-C(6) & 1.489(3) \\ C(6)-C(7) & 1.378(3) \\ C(6)-C(11) & 1.380(3) \\ C(7)-C(8) & 1.369(3) \\ C(7)-C(8) & 1.369(3) \\ C(7)-H(7) & 0.9300 \\ C(8)-C(9) & 1.371(4) \\ C(8)-H(8) & 0.9300 \\ C(9)-C(10) & 1.357(4) \\ C(9)-H(9) & 0.9300 \\ C(9)-C(10) & 1.357(4) \\ C(9)-H(9) & 0.9300 \\ C(10)-C(11) & 1.369(4) \\ C(10)-H(10) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(12)-C(13) & 1.392(3) \\ C(12)-C(13) & 1.392(3) \\ C(13)-C(14) & 1.435(3) \\ C(13)-C(14) & 1.435(3) \\ C(15)-C(16) & 1.374(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \\ \end{array}$	C(1)-C(4)	1.441(3)
$\begin{array}{ccccc} C(2)-H(2A) & 0.9700 \\ C(2)-H(2B) & 0.9700 \\ C(3)-H(3A) & 0.9700 \\ C(3)-H(3B) & 0.9700 \\ C(4)-C(12) & 1.400(3) \\ C(4)-C(5) & 1.450(3) \\ C(5)-C(6) & 1.489(3) \\ C(5)-C(6) & 1.489(3) \\ C(6)-C(7) & 1.378(3) \\ C(6)-C(11) & 1.380(3) \\ C(7)-C(8) & 1.369(3) \\ C(7)-H(7) & 0.9300 \\ C(8)-C(9) & 1.371(4) \\ C(8)-H(8) & 0.9300 \\ C(9)-C(10) & 1.357(4) \\ C(9)-H(9) & 0.9300 \\ C(10)-C(11) & 1.369(4) \\ C(10)-H(10) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(12)-C(13) & 1.392(3) \\ C(12)-C(13) & 1.392(3) \\ C(13)-C(21) & 1.435(3) \\ C(13)-C(14) & 1.436(3) \\ C(15)-C(16) & 1.374(3) \\ C(16)-C(17) & 1.372(4) \\ \end{array}$	C(2)-C(3)	1.515(3)
$\begin{array}{cccc} C(2)-H(2B) & 0.9700 \\ C(3)-H(3A) & 0.9700 \\ C(3)-H(3B) & 0.9700 \\ C(4)-C(12) & 1.400(3) \\ C(4)-C(5) & 1.450(3) \\ C(5)-C(6) & 1.489(3) \\ C(6)-C(7) & 1.378(3) \\ C(6)-C(11) & 1.380(3) \\ C(7)-C(8) & 1.369(3) \\ C(7)-H(7) & 0.9300 \\ C(8)-C(9) & 1.371(4) \\ C(8)-H(8) & 0.9300 \\ C(9)-C(10) & 1.357(4) \\ C(9)-H(9) & 0.9300 \\ C(10)-C(11) & 1.369(4) \\ C(10)-H(10) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(12)-C(13) & 1.392(3) \\ C(12)-C(13) & 1.392(3) \\ C(13)-C(14) & 1.435(3) \\ C(15)-C(16) & 1.374(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \\ \end{array}$	C(2)-H(2A)	0.9700
$\begin{array}{cccc} C(3)-H(3A) & 0.9700 \\ C(3)-H(3B) & 0.9700 \\ C(4)-C(12) & 1.400(3) \\ C(4)-C(5) & 1.450(3) \\ C(5)-C(6) & 1.489(3) \\ C(6)-C(7) & 1.378(3) \\ C(6)-C(11) & 1.380(3) \\ C(7)-C(8) & 1.369(3) \\ C(7)-H(7) & 0.9300 \\ C(8)-C(9) & 1.371(4) \\ C(8)-H(8) & 0.9300 \\ C(9)-C(10) & 1.357(4) \\ C(9)-H(9) & 0.9300 \\ C(10)-C(11) & 1.369(4) \\ C(10)-H(10) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(12)-C(13) & 1.392(3) \\ C(12)-C(13) & 1.392(3) \\ C(13)-C(14) & 1.435(3) \\ C(13)-C(14) & 1.436(3) \\ C(15)-C(16) & 1.374(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \\ \end{array}$	C(2)-H(2B)	0.9700
$\begin{array}{cccc} C(3)-H(3B) & 0.9700 \\ C(4)-C(12) & 1.400(3) \\ C(4)-C(5) & 1.450(3) \\ C(5)-C(6) & 1.489(3) \\ C(6)-C(7) & 1.378(3) \\ C(6)-C(11) & 1.380(3) \\ C(7)-C(8) & 1.369(3) \\ C(7)-H(7) & 0.9300 \\ C(8)-C(9) & 1.371(4) \\ C(8)-H(8) & 0.9300 \\ C(9)-C(10) & 1.357(4) \\ C(9)-H(9) & 0.9300 \\ C(10)-C(11) & 1.369(4) \\ C(10)-H(10) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(12)-C(13) & 1.392(3) \\ C(12)-H(12) & 0.9300 \\ C(13)-C(21) & 1.435(3) \\ C(13)-C(14) & 1.436(3) \\ C(15)-C(16) & 1.374(3) \\ C(16)-C(17) & 1.372(4) \\ \end{array}$	C(3)-H(3A)	0.9700
$\begin{array}{ccccc} C(4)-C(12) & 1.400(3) \\ C(4)-C(5) & 1.450(3) \\ C(5)-C(6) & 1.489(3) \\ C(6)-C(7) & 1.378(3) \\ C(6)-C(11) & 1.380(3) \\ C(7)-C(8) & 1.369(3) \\ C(7)-H(7) & 0.9300 \\ C(8)-C(9) & 1.371(4) \\ C(8)-H(8) & 0.9300 \\ C(9)-C(10) & 1.357(4) \\ C(9)-H(9) & 0.9300 \\ C(10)-C(11) & 1.369(4) \\ C(10)-H(10) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(12)-C(13) & 1.392(3) \\ C(12)-H(12) & 0.9300 \\ C(13)-C(21) & 1.435(3) \\ C(13)-C(14) & 1.436(3) \\ C(15)-C(16) & 1.374(3) \\ C(15)-C(16) & 1.374(3) \\ C(16)-C(17) & 1.372(4) \\ \end{array}$	C(3)-H(3B)	0.9700
$\begin{array}{ccccc} C(4)-C(5) & 1.450(3) \\ C(5)-C(6) & 1.489(3) \\ C(6)-C(7) & 1.378(3) \\ C(6)-C(11) & 1.380(3) \\ C(7)-C(8) & 1.369(3) \\ C(7)-H(7) & 0.9300 \\ C(7)-H(7) & 0.9300 \\ C(8)-C(9) & 1.371(4) \\ C(8)-H(8) & 0.9300 \\ C(9)-C(10) & 1.357(4) \\ C(9)-H(9) & 0.9300 \\ C(10)-C(11) & 1.369(4) \\ C(10)-H(10) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(12)-C(13) & 1.392(3) \\ C(12)-C(13) & 1.392(3) \\ C(12)-H(12) & 0.9300 \\ C(13)-C(21) & 1.435(3) \\ C(13)-C(14) & 1.436(3) \\ C(15)-C(16) & 1.374(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \\ \end{array}$	C(4)-C(12)	1.400(3)
$\begin{array}{ccccc} C(5)-C(6) & 1.489(3) \\ C(6)-C(7) & 1.378(3) \\ C(6)-C(11) & 1.380(3) \\ C(7)-C(8) & 1.369(3) \\ C(7)-H(7) & 0.9300 \\ C(8)-C(9) & 1.371(4) \\ C(8)-H(8) & 0.9300 \\ C(9)-C(10) & 1.357(4) \\ C(9)-H(9) & 0.9300 \\ C(10)-C(11) & 1.369(4) \\ C(10)-H(10) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(12)-C(13) & 1.392(3) \\ C(12)-C(13) & 1.392(3) \\ C(13)-C(21) & 1.435(3) \\ C(13)-C(14) & 1.436(3) \\ C(15)-C(16) & 1.374(3) \\ C(15)-C(16) & 1.374(3) \\ C(16)-C(17) & 1.372(4) \\ \end{array}$	C(4)-C(5)	1.450(3)
$\begin{array}{cccc} C(6)-C(7) & 1.378(3) \\ C(6)-C(11) & 1.380(3) \\ C(7)-C(8) & 1.369(3) \\ C(7)-H(7) & 0.9300 \\ C(8)-C(9) & 1.371(4) \\ C(8)-H(8) & 0.9300 \\ C(9)-C(10) & 1.357(4) \\ C(9)-H(9) & 0.9300 \\ C(10)-C(11) & 1.369(4) \\ C(10)-H(10) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(12)-C(13) & 1.392(3) \\ C(12)-C(13) & 1.392(3) \\ C(13)-C(21) & 1.435(3) \\ C(13)-C(14) & 1.436(3) \\ C(15)-C(16) & 1.374(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \\ \end{array}$	C(5)-C(6)	1.489(3)
$\begin{array}{ccccc} C(6)-C(11) & 1.380(3) \\ C(7)-C(8) & 1.369(3) \\ C(7)-H(7) & 0.9300 \\ C(8)-C(9) & 1.371(4) \\ C(8)-H(8) & 0.9300 \\ C(9)-C(10) & 1.357(4) \\ C(9)-H(9) & 0.9300 \\ C(10)-C(11) & 1.369(4) \\ C(10)-H(10) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(12)-C(13) & 1.392(3) \\ C(12)-C(13) & 1.392(3) \\ C(12)-C(14) & 1.435(3) \\ C(13)-C(21) & 1.435(3) \\ C(15)-C(16) & 1.374(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \\ \end{array}$	C(6)-C(7)	1.378(3)
$\begin{array}{cccc} C(7)-C(8) & & 1.369(3) \\ C(7)-H(7) & & 0.9300 \\ C(8)-C(9) & & 1.371(4) \\ C(8)-H(8) & & 0.9300 \\ C(9)-C(10) & & 1.357(4) \\ C(9)-H(9) & & 0.9300 \\ C(10)-C(11) & & 1.369(4) \\ C(10)-H(10) & & 0.9300 \\ C(11)-H(10) & & 0.9300 \\ C(11)-H(11) & & 0.9300 \\ C(12)-C(13) & & 1.392(3) \\ C(12)-H(12) & & 0.9300 \\ C(13)-C(21) & & 1.435(3) \\ C(13)-C(14) & & 1.436(3) \\ C(15)-C(16) & & 1.374(3) \\ C(15)-C(20) & & 1.388(3) \\ C(16)-C(17) & & 1.372(4) \\ \end{array}$	C(6)-C(11)	1.380(3)
$\begin{array}{cccc} C(7)-H(7) & 0.9300 \\ C(8)-C(9) & 1.371(4) \\ C(8)-H(8) & 0.9300 \\ C(9)-C(10) & 1.357(4) \\ C(9)-H(9) & 0.9300 \\ C(10)-C(11) & 1.369(4) \\ C(10)-H(10) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(12)-C(13) & 1.392(3) \\ C(12)-H(12) & 0.9300 \\ C(13)-C(21) & 1.435(3) \\ C(13)-C(14) & 1.436(3) \\ C(15)-C(16) & 1.374(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \end{array}$	C(7)-C(8)	1.369(3)
$\begin{array}{cccc} C(8)-C(9) & 1.371(4) \\ C(8)-H(8) & 0.9300 \\ C(9)-C(10) & 1.357(4) \\ C(9)-H(9) & 0.9300 \\ C(10)-C(11) & 1.369(4) \\ C(10)-H(10) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(12)-C(13) & 1.392(3) \\ C(12)-H(12) & 0.9300 \\ C(13)-C(21) & 1.435(3) \\ C(13)-C(21) & 1.435(3) \\ C(15)-C(16) & 1.374(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \end{array}$	C(7)-H(7)	0.9300
$\begin{array}{cccc} C(8)-H(8) & 0.9300 \\ C(9)-C(10) & 1.357(4) \\ C(9)-H(9) & 0.9300 \\ C(10)-C(11) & 1.369(4) \\ C(10)-H(10) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(12)-C(13) & 1.392(3) \\ C(12)-H(12) & 0.9300 \\ C(13)-C(21) & 1.435(3) \\ C(13)-C(14) & 1.436(3) \\ C(15)-C(16) & 1.374(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \end{array}$	C(8)-C(9)	1.371(4)
$\begin{array}{cccc} C(9)-C(10) & 1.357(4) \\ C(9)-H(9) & 0.9300 \\ C(10)-C(11) & 1.369(4) \\ C(10)-H(10) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(12)-C(13) & 1.392(3) \\ C(12)-H(12) & 0.9300 \\ C(13)-C(21) & 1.435(3) \\ C(13)-C(14) & 1.436(3) \\ C(15)-C(16) & 1.374(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \end{array}$	C(8)-H(8)	0.9300
$\begin{array}{cccc} C(9)-H(9) & 0.9300 \\ C(10)-C(11) & 1.369(4) \\ C(10)-H(10) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(12)-C(13) & 1.392(3) \\ C(12)-H(12) & 0.9300 \\ C(13)-C(21) & 1.435(3) \\ C(13)-C(14) & 1.436(3) \\ C(15)-C(16) & 1.374(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \end{array}$	C(9)-C(10)	1.357(4)
$\begin{array}{cccc} C(10)-C(11) & 1.369(4) \\ C(10)-H(10) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(12)-C(13) & 1.392(3) \\ C(12)-H(12) & 0.9300 \\ C(13)-C(21) & 1.435(3) \\ C(13)-C(21) & 1.436(3) \\ C(13)-C(14) & 1.436(3) \\ C(15)-C(16) & 1.374(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \end{array}$	C(9)-H(9)	0.9300
$\begin{array}{cccc} C(10)-H(10) & 0.9300 \\ C(11)-H(11) & 0.9300 \\ C(12)-C(13) & 1.392(3) \\ C(12)-H(12) & 0.9300 \\ C(13)-C(21) & 1.435(3) \\ C(13)-C(14) & 1.436(3) \\ C(15)-C(16) & 1.374(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \end{array}$	C(10)-C(11)	1.369(4)
$\begin{array}{cccc} C(11)-H(11) & 0.9300 \\ C(12)-C(13) & 1.392(3) \\ C(12)-H(12) & 0.9300 \\ C(13)-C(21) & 1.435(3) \\ C(13)-C(14) & 1.436(3) \\ C(15)-C(16) & 1.374(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \end{array}$	C(10)-H(10)	0.9300
$\begin{array}{cccc} C(12)-C(13) & 1.392(3) \\ C(12)-H(12) & 0.9300 \\ C(13)-C(21) & 1.435(3) \\ C(13)-C(14) & 1.436(3) \\ C(15)-C(16) & 1.374(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \end{array}$	C(11)-H(11)	0.9300
$\begin{array}{cccc} C(12)-H(12) & 0.9300 \\ C(13)-C(21) & 1.435(3) \\ C(13)-C(14) & 1.436(3) \\ C(15)-C(16) & 1.374(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \end{array}$	C(12)-C(13)	1.392(3)
$\begin{array}{cccc} C(13)-C(21) & 1.435(3) \\ C(13)-C(14) & 1.436(3) \\ C(15)-C(16) & 1.374(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \end{array}$	C(12)-H(12)	0.9300
$\begin{array}{ccc} C(13)-C(14) & 1.436(3) \\ C(15)-C(16) & 1.374(3) \\ C(15)-C(20) & 1.388(3) \\ C(16)-C(17) & 1.372(4) \end{array}$	C(13)-C(21)	1.435(3)
C(15)-C(16) 1.374(3) C(15)-C(20) 1.388(3) C(16)-C(17) 1.372(4)	C(13)-C(14)	1.436(3)
C(15)-C(20) 1.388(3) C(16)-C(17) 1.372(4)	C(15)-C(16)	1.374(3)
C(16)-C(17) 1.372(4)	C(15)-C(20)	1.388(3)
	C(16)-C(17)	1.372(4)

 Table S2 Bond lengths [A] and angles [deg] for 6c

O(1c) $II(1c)$		
C(16)-H(16)	0.9300	
C(17)-C(18)	1.371(4)	
C(17)-H(17)	0.9300	
C(18)-C(19)	1.362(4)	
C(18)-H(18)	0.9300	
C(19)-C(20)	1.366(4)	
C(19)-H(19)	0.9300	
C(20)-H(20)	0.9300	
C(21)-C(22)	1.494(3)	
C(22)-H(22A)	0.9600	
C(22)-H(22B)	0.9600	
C(22)-H(22C)	0.9600	
C(23)-C(26)	1.442(3)	
C(24)-C(25)	1.512(3)	
C(24)-H(24A)	0.9700	
C(24)-H(24B)	0.9700	
C(25)-H(25A)	0.9700	
C(25)-H(25B)	0.9700	
C(26)-C(34)	1.400(3)	
C(26)-C(27)	1.464(3)	
C(27)-C(28)	1.498(4)	
C(28)-C(33)	1.377(4)	
C(28)-C(29)	1.385(3)	
C(29)-C(30)	1.364(4)	
C(29)-H(29)	0.9300	
C(30)-C(31)	1.369(5)	
C(30)-H(30)	0.9300	
C(31)-C(32)	1.364(5)	
C(31)-H(31)	0.9300	
C(32)-C(33)	1.378(4)	
C(32)-H(32)	0.9300	
C(33)-H(33)	0.9300	
C(34)-C(35)	1.400(3)	
C(34)-H(34)	0.9300	
C(35)-C(36)	1.431(3)	
C(35)-C(43)	1.442(3)	
C(37)-C(38)	1.366(4)	
C(37)-C(42)	1.376(3)	
C(38)-C(39)	1.372(4)	
C(38)-H(38)	0.9300	
C(39)-C(40)	1.352(4)	
C(39)-H(39)	0.9300	
C(40)-C(41)	1.349(4)	
C(40)-H (40)	0.9300	
C(41)-C(42)	1.384(4)	
C(41)-H(41)	0.9300	
C(42)-H(42)	0.9300	
C(43)-C(44)	1.490(4)	
C(44)-H(44A)	0.9600	
C(44)-H(44B)	0.9600.	
C(44)-H(44C)	0.9600	

Symmetry transformations used to generate equivalent atoms:

C(14)-N(3)-N(4)-C(21)	1.1(3)
C(15)-N(3)-N(4)-C(21)	-169.8(2)
C(36)-N(7)-N(8)-C(43)	0.7(3)
C(37)-N(7)-N(8)-C(43)	176.4(2)
C(3)-N(2)-C(1)-N(1)	-2.6(3)
C(3)-N(2)-C(1)-C(4)	177.8(2)
C(2)-N(1)-C(1)-N(2)	-1.1(3)
C(2)-N(1)-C(1)-C(4)	178.5(2)
C(1)-N(1)-C(2)-C(3)	3.9(3)
C(1)-N(2)-C(3)-C(2)	4.9(3)
N(1)-C(2)-C(3)-N(2)	-5.0(3)
N(2)-C(1)-C(4)-C(12)	-5.0(4)
N(1)-C(1)-C(4)-C(12)	175.6(2)
N(2)-C(1)-C(4)-C(5)	-179.9(2)
N(1)-C(1)-C(4)-C(5)	0.6(4)
C(12)-C(4)-C(5)-O(1)	-162.1(2)
C(1)-C(4)-C(5)-O(1)	13.5(4)
C(12)-C(4)-C(5)-C(6)	18.0(3)
C(1)-C(4)-C(5)-C(6)	-166.5(2)
O(1)-C(5)-C(6)-C(7)	-131.0(3)
C(4)-C(5)-C(6)-C(7)	49.0(4)
O(1)-C(5)-C(6)-C(11)	43.8(3)
C(4)-C(5)-C(6)-C(11)	-136.3(3)
C(11)-C(6)-C(7)-C(8)	0.4(4)
C(5)-C(6)-C(7)-C(8)	175.2(2)
C(6)-C(7)-C(8)-C(9)	0.8(4)
C(7)-C(8)-C(9)-C(10)	-0.7(5)
C(8)-C(9)-C(10)-C(11)	-0.5(5)
C(9)-C(10)-C(11)-C (6)	1.6(4)
C(7)-C(6)-C(11)-C(10)	-1.6(4)
C(5)-C(6)-C(11)-C(10)	-176.6(2)
C(1)-C(4)-C(12)-C(13)	6.4(5)
C(5)-C(4)-C(12)-C(13)	-178.6(3)
C(4)-C(12)-C(13)-C(21)	-179.9(3)
C(4)-C(12)-C(13)-C(14)	1.7(6)
N(4)-N(3)-C(14)-O(2)	179.1(2)
C(15)-N(3)-C(14)-O(2)	-11.2(4)
N(4)-N(3)-C(14)-C(13)	-1.4(3)
C(15)-N(3)-C(14)-C(13)	168.2(2)
C(12)-C(13)-C(14)-O(2)	-1.0(5)
C(21)-C(13)-C(14)-O(2)	-179.5(3)
C(12)-C(13)-C(14)-N(3)	179.6(3)
C(21)-C(13)-C(14)-N(3)	1.1(3)

Table S3Torsion angles [deg] for 6c

$\begin{array}{cccc} C(14)-N(3)-C(15)-C(16) & 21.7(4) \\ N(4)-N(3)-C(15)-C(16) & -169.2(2) \\ C(14)-N(3)-C(15)-C(20) & 11.6(3) \\ N(4)-N(3)-C(15)-C(20) & 11.6(3) \\ C(20)-C(15)-C(16)-C(17) & 1.4(4) \\ N(3)-C(15)-C(16)-C(17) & -177.7(2) \\ C(15)-C(16)-C(17)-C(18) & -1.5(5) \\ C(16)-C(17)-C(18)-C(19) & 0.4(5) \\ C(17)-C(18)-C(19)-C(20) & 0.9(5) \\ C(18)-C(19)-C(20)-C(15) & -1.0(5) \\ C(16)-C(15)-C(20)-C(19) & -0.2(4) \\ \end{array}$	
N(4)-N(3)-C(15)-C(16) $-169.2(2)$ $C(14)-N(3)-C(15)-C(20)$ $-157.4(3)$ $N(4)-N(3)-C(15)-C(20)$ $11.6(3)$ $C(20)-C(15)-C(16)-C(17)$ $1.4(4)$ $N(3)-C(15)-C(16)-C(17)$ $-177.7(2)$ $C(15)-C(16)-C(17)-C(18)$ $-1.5(5)$ $C(16)-C(17)-C(18)-C(19)$ $0.4(5)$ $C(17)-C(18)-C(19)-C(20)$ $0.9(5)$ $C(18)-C(19)-C(20)-C(15)$ $-1.0(5)$ $C(16)-C(15)-C(20)-C(19)$ $-0.2(4)$	
C(14)-N(3)-C(15)-C(20) $-157.4(3)$ $N(4)-N(3)-C(15)-C(20)$ $11.6(3)$ $C(20)-C(15)-C(16)-C(17)$ $1.4(4)$ $N(3)-C(15)-C(16)-C(17)$ $-177.7(2)$ $C(15)-C(16)-C(17)-C(18)$ $-1.5(5)$ $C(16)-C(17)-C(18)-C(19)$ $0.4(5)$ $C(17)-C(18)-C(19)-C(20)$ $0.9(5)$ $C(18)-C(19)-C(20)-C(15)$ $-1.0(5)$ $C(16)-C(15)-C(20)-C(19)$ $-0.2(4)$	
N(4)-N(3)-C(15)-C(20) $11.6(3)$ $C(20)-C(15)-C(16)-C(17)$ $1.4(4)$ $N(3)-C(15)-C(16)-C(17)$ $-177.7(2)$ $C(15)-C(16)-C(17)-C(18)$ $-1.5(5)$ $C(16)-C(17)-C(18)-C(19)$ $0.4(5)$ $C(17)-C(18)-C(19)-C(20)$ $0.9(5)$ $C(18)-C(19)-C(20)-C(15)$ $-1.0(5)$ $C(16)-C(15)-C(20)-C(19)$ $-0.2(4)$	
C(20)-C(15)-C(16)-C(17) $1.4(4)$ $N(3)-C(15)-C(16)-C(17)$ $-177.7(2)$ $C(15)-C(16)-C(17)-C(18)$ $-1.5(5)$ $C(16)-C(17)-C(18)-C(19)$ $0.4(5)$ $C(17)-C(18)-C(19)-C(20)$ $0.9(5)$ $C(18)-C(19)-C(20)-C(15)$ $-1.0(5)$ $C(16)-C(15)-C(20)-C(19)$ $-0.2(4)$	
N(3)-C(15)-C(16)-C(17) $-177.7(2)$ $C(15)-C(16)-C(17)-C(18)$ $-1.5(5)$ $C(16)-C(17)-C(18)-C(19)$ $0.4(5)$ $C(17)-C(18)-C(19)-C(20)$ $0.9(5)$ $C(18)-C(19)-C(20)-C(15)$ $-1.0(5)$ $C(16)-C(15)-C(20)-C(19)$ $-0.2(4)$	
C(15)-C(16)-C(17)-C(18) $-1.5(5)$ $C(16)-C(17)-C(18)-C(19)$ $0.4(5)$ $C(17)-C(18)-C(19)-C(20)$ $0.9(5)$ $C(18)-C(19)-C(20)-C(15)$ $-1.0(5)$ $C(16)-C(15)-C(20)-C(19)$ $-0.2(4)$	
C(16)-C(17)-C(18)-C(19)0.4(5)C(17)-C(18)-C(20)0.9(5)C(18)-C(19)-C(20)-C(15)-1.0(5)C(16)-C(15)-C(20)-C(19)-0.2(4)	
C(17)-C(18)-C(19)-C(20)0.9(5)C(18)-C(19)-C(20)-C(15)-1.0(5)C(16)-C(15)-C(20)-C(19)-0.2(4)	
C(18)-C(19)-C(20)-C(15) -1.0(5) C(16)-C(15)-C(20)-C(19) -0.2(4)	
C(16)-C(15)-C(20)-C(19) -0.2(4)	
N(3)-C(15)-C(20)-C(19) 179.0(2)	
N(3)-N(4)-C(21)-C(13) -0.4(3)	
N(3)-N(4)-C(21)-C(22) -178.7(2)	
C(12)-C(13)-C(21)-N(4) -179.2(2)	
C(14)-C(13)-C(21)-N(4) -0.4(3)	
C(12)-C(13)-C(21)-C(22) -1.1(4)	
C(14)-C(13)-C(21)-C(22) 177.8(3)	
C(25)-N(6)-C(23)-N(5) 5.2(3)	
C(25)-N(6)-C(23)-C(26) -173.6(2)	
C(24)-N(5)C-(23)-N(6) -3.1(3)	
C(24)-N(5)-C(23)-C(26) 175.7(2)	
C(23)N(5)C(24)C(25) -0.2(3)	
C(23)-N(6)-C(25)-C(24) -5.0(3)	
N(5)-C(24)-C(25)-N(6) 2.9(3)	
N(6)-C(23)-C(26)-C(34) 1.1(4)	
N(5)C(23)C(26)C(34) -177.5(2)	
N(6)-C(23)-C(26)-C(27) -175.3(2)	
N(5)-C(23)-C(26)-C(27) 6.1(4)	
C(34)-C(26)-C (27)-O(3) -151.5(3)	
C(23)-C(26)-C(27)-O(3) 25.4(4)	
C(34)-C(26)-C(27)-C(28) 31.0(3)	
C(23)-C(26)-C(27)-C(28) -152.1(2)	
O(3)-C(27)-C(28)-C(33) 30.5(4)	
C(26)-C(27)-C(28)-C(33) -151.9(2)	
O(3)-C(27)-C(28)-C(29) -143.2(3)	
C(26)-C(27)-C(28)-C(29) 34.4(4)	
C(33)-C(28)-C(29)-C(30) 1.3(4)	
C(27)-C(28)-C(29)-C(30) 175.0(2)	
C(28)-C(29)-C(30)-C(31) 0.4(5)	
C(29)-C(30)-C(31)-C(32) -1.3(5)	
C(30)-C(31)-C(32)-C(33) 0.7(5)	
C(29)-C(28)-C(33)-C(32) -1.9(4)	
C(27)-C(28)-C(33)-C(32) -175.9(2)	

C(31)-C(32)-C(33)-C(28)	1.0(4)
C(23)-C(26)-C(34)-C(35)	8.5(5)
C(27)-C(26)-C(34)-C(35)	-175.0(3)
C(26)-C(34)-C(35)-C(36)	8.1(6)
C(26)-C(34)-C(35)-C(43)	-177.8(3)
N(8)-N(7)-C(36)-O(4)	176.9(2)
C(37)-N(7)-C(36)-O(4)	1.8(4)
N(8)-N(7)-C(36)-C(35)	-1.1(3)
C(37)-N(7)-C(36)-C(35)	-176.2(2)
C(34)-C(35)-C(36)-O(4)	-2.0(5)
C(43)-C(35)-C(36)-O(4)	-176.7(3)
C(34)-C(35)-C(36)-N(7)	175.8(3)
C(43)-C(35)-C(36)-N(7)	1.0(3)
C(36)-N(7)-C(37)-C(38)	6.7(4)
N(8)-N(7)-C(37)-C(38)	-168.2(2)
C(36)-N(7)-C(37)-C(42)	-173.6(3)
N(8)-N(7)-C(37)-C(42)	11.5(4)
C(42)-C(37)-C(38)-C(39)	-1.4(5)
N(7)-C(37)-C(38)-C(39)	178.3(3)
C(37)-C(38)-C(39)-C(40)	1.8(5)
C(38)-C(39)-C(40)-C(41)	-0.4(5)
C(39)-C(40)-C(41)-C(42)	-1.3(6)
C(38)-C(37)-C(42)-C(41)	-0.3(5)
N(7)-C(37)-C(42)-C(41)	-180.0(3)
C(40)-C(41)-C(42)-C(37)	1.6(6)
N(7)-N(8)-C(43)-C(35)	0.1(3)
N(7)-N(8)-C(43)-C (44)	-177.4(2)
C(34)-C(35)-C(43)-N(8)	-176.4(2)
C(36)-C(35)-C(43)-N(8)	-0.7(3)
C(34)-C(35)-C(43)-C(44)	0.8(4)
C(36)-C(35)-C(43)-C(44)	176.5(3)

Table S4	Hydrogen bonds for 6c	[A and deg.]
----------	------------------------------	--------------

	<i>.</i>		6.	
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(6)-H(6)O(4)	0.86	1.83	2.585(3)	145.1
N(5)-H(5)O(3)	0.86	2.12	2.675(3)	122.0
N(2)-H(2)O(2)	0.86	1.74	2.604(3)	178.9
N(1)-H(1)O(3)	0.86	2.34	3.107(3)	149.3
N(1)-H(1)O(1)	0.86	1.99	2.586(3)	125.7

¹H NMR and ¹³C NMR Spectra for α,β-Unsaturated Pyrazolone-Based HKAs 6-8

Figure 1. ¹H NMR (400 MHz, DMSO-*d*₆) spectra of compound 6a

Figure 3. ¹H NMR (500 MHz, DMSO-*d*₆+HClO₄) spectra of compound 6b

Figure 4. ¹³C NMR (125 MHz, DMSO-*d*₆+HClO₄) spectra of compound **6b**

Figure 5. ¹H NMR (400 MHz, CDCl₃) spectra of compound 6c

Figure 6. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 6c

Figure 9. ¹H NMR (400 MHz, DMSO-*d*₆) spectra of compound 6e

Figure 10. ¹³C NMR (100 MHz, DMSO-*d*₆) spectra of compound 6e

Figure 12. ¹³C NMR (100 MHz, DMSO $-d_6$) spectra of compound 6f

Figure 13. ¹H NMR (400 MHz, CDCl₃) spectra of compound 6g

Figure 14. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 6g

Figure 15. ¹H NMR (400 MHz, CDCl₃) spectra of compound 6h

Figure 16. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 6h

Figure 17. ¹H NMR (400 MHz, CDCl₃) spectra of compound 6i

Figure 18. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 6i

Figure 20. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound 6j

Figure 21. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound 6k

Figure 22. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound 6k

Figure 24. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound 6l

Figure 25. ¹H NMR (400 MHz, DMSO-*d*₆) spectra of compound 6m

Figure 26. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound 6m

Figure 27. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound 6n

Figure 29. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **7a**

Figure 30. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 7a

Figure 34. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound 7c

Figure 35. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound 7d

62

Figure 38. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound **7e**

Figure 39. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **7f**

Figure 40. ¹³C NMR (125 MHz, DMSO $-d_6$) spectra of compound **7f**

Figure 41. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound 7g

Figure 42. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound 7g

Figure 43. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound 7h

Figure 44. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound 7h

Figure 45. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound **7i**

Figure 48. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound 7j

Figure 52. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound 71

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

Figure 53. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound 7m

Figure 55. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound 8a

Figure 56. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound 8a

Figure 61. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound **8d**

Figure 63. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound **8e**

Figure 65. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound 8f

Figure 67. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **8g**

Figure 68. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 8g

Figure 74. ¹³C NMR (100 MHz, DMSO-*d*₆) spectra of compound 8j

- 1. (a) Z.-T. Huang, M.-X. Wang, Synthesis, 1992, 12, 1273; (b) Z.-J. Li, D. Charles, Synth. Commun., 2001, 31, 527.
- 2. CCDC 917318 contain the supplementary crystallographic data for compound 6c. These data can be obtained free of charge from The

Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.