A Simple and efficient method for mild and selective oxidation of propargylic alcohols using TEMPO and calcium hypochlorite

Sabbasani Rajasekhara Reddy,^{a,b} Anju Chadha^{b,c*}

^aSchool of Advanced Sciences, Organic Chemistry Division, VIT University, VELLORE:

632014, Chennai 600036, India

^bLaboratory of Bioorganic Chemistry, Department of Biotechnology, Indian Institute of

Technology Madras, Chennai 600036, India

^cNational Center for Catalysis Research, Indian Institute of Technology Madras, Chennai

600036, India

Fax: 91 44 2257 4102, Tel: 91 44 2257 4106 E-mail: anjuc@iitm.ac.in

SUPPORTING INFORMATION

Supporting information available: Detailed experimental procedures and characterization data, along with spectra for novel compounds.

3-phenylpropiolaldehyde (Table 1, 2a) (Maeda *et al.*, 2002) **1-Phenylprop-2yn-1-one (Table 1, 2b)** (Maeda *et al.*, 2002) **4-phenylbut-3-yn-2-one (Table 1. 2c)** (Hanson, *et al.*, 2011) **1,3-diphenylprop-2-yn-1-ol (Table 1. 2d)** (*Liu, J.; Xie, X.; Ma, Synthesis* **2012**, *44*, 1569) **1-Octyn-3-one (Table 1. 2e)** (Maeda *et al.*, 2002)

Colorless solid, mp: (97-100 °C)

¹H NMR (400 MHz, TMS, CDCl₃) $\delta_{\rm H}$ = 9.37 (s, 1H), 7.58-7.50 (m, 3H) (Figure 1) ¹³C NMR (CDC₁₃, 100 MHz): $\delta_{\rm C}$ = \Box 176.1, 142.5, 140.6, 138.6, 130.0, 127.8, 90.0, 86.4 (Figure 2) IR (neat): v = 3063, 2933, 2204, 1651, 1566, 1550, 1434 cm⁻¹

HRMS[M+H]⁺: Calc. for C₈H₅BrNO 209.9554, found: (M)⁺ 209.9558 (Figure 3)

3,3[']-(Pyridine-2,6diyl)dipropiolaldehyde (Table 1. 2g)

Solid (unstable)

¹H NMR (400 MHz, TMS, CDCl₃) $\delta_{\rm H} = \delta$ 9.38 (s, 2H), 7.80-7.61 (m, 3H) (Figure 4) ¹³C NMR (100 MHz, CDCl₃,TMS) $\delta_{\rm C} = 176.3$, 141.5, 137.6, 129.8, 90.1, 86.1 (Figure 5) IR (neat), v = 3421, 3059, 2956, 2207, 1654, 1567, 1445 cm⁻¹

3, 3'-(1,4-phenylene)dipropiolaldehyde (Table 1, 2h) (Ye et al., 2004)

Colourless solid ¹H NMR (400 MHz, TMS, CDCl₃) $\delta_{\rm H} = 9.37(s, 2H)$, $\Box 7.56 (s, 4H)$ (Figure 6) ¹³CNMR (100 MHz, CDCl₃,TMS) $\delta_{\rm C} = 176.1$, 133.1, 122.1, 92.5, 90.0 (Figure 7) IR (neat) : 2187, 1650, 1606, 1499 cm⁻¹ 3-(4-methoxyphenyl)propiolaldehyde (Table 1, 2i) (Nowa-Krol, et. al., 2012)

Colourless solid ¹H NMR (400 MHz, TMS, CDCl₃) $\delta_{\rm H} = 9.37({\rm s}, 2{\rm H}), \Box 7.56 ({\rm s}, 4{\rm H})$ ¹³CNMR (100 MHz, TMS, CDCl₃) $\delta_{\rm C} = 176.1, 133.1, 122.1, 92.5, 90.0$ IR (neat) : 2187, 1650, 1606, 1499 cm⁻¹

3-(7-nitro-9H-fluoren-2-yl)prop-2-yn-1-al (Table 1, 2j)

Solid, mp: 145-150 °C

¹H NMR (400 MHz, TMS, CDCl₃) $\delta_{\rm H} = 9.46$ (s, 1H), 8.45-7.70 (m, 6H), 4.07 (s, 2H) (Figure, 8) ¹³CNMR (100 MHz, CDCl₃,TMS); 176.5, 147.6, 146.4, 144.8, 144.6, 142.3, 132.8, 130.1, 123.4, 121.6, 120.9, 120.7, 119.4, 94.9, 89.2, 36.8 (Figure, 9) IR (neat): v = 2855, 1646, 1516, 1415 cm⁻¹

3-(9H-fluoren-2-yl)propiolaldehyde (Table 1, 2k)

Colourless solid, mp: 110-112 °C

¹H NMR (400 MHz, CDCl₃, TMS) $\delta_{\rm H} = 9.45$ (s, 1H), 7.38-7.82 (m, 7H), 3.92 (s, 2H) (Figure 10) ¹³C NMR(400 MHz, CDCl₃,TMS): $\delta_{\rm C} = 177.0$, 145.3, 144.3, 143.7, 140.7, 132.8, 130.2, 128.4, 127.5, 125.5, 121.0,120.4, 117.3, 96.9, 89.2, 37.0 (Figure 11)

IZ7.3, 125.3, 121.0, 120.4, 117.3, 90.9, 89.2, 57.0 (Figure 11) IR (KBr) $v = 700, 888, 1644, 1604, 2179, 2925, 3060 \text{ cm}^{-1}$

HRMS.. Calc for $C_{16}H_{11}O$; 219.0810, Obs. 219.0811 (Figure 12)

Ethyl 2-oxo-4-phenylbut-3-ynoate (Table 1, 2l) (Guo et al., 2003)

¹H NMR (400 MHz, CDCl₃, TMS) $\delta_{\rm H}$ = 7.68-7.40 (m, 5H), 4.12 (q, *J* = 7.1, 7.1 Hz, 2H), 1.43 (t, *J* = 7.1 Hz, 3H)

¹³C NMR(400 MHz, CDCl₃,TMS) $\delta_{C} = 169.6$, 159.2, 133.8, 131.8, 128.8, 119.1, 98.0, 87.2, 63.3, 14.0 IR (neat) v cm⁻¹ = 2179, 1722, 1626 HRMS. Calc for C₁₂H₁₀O₃Na ; 225.0528, Obs. 225.0531

Table 2 Synthesis of propargylic alcohols using Sonogashira coupling (Sonogashira et al., 1975)

(6-Bromopyridin-2-yl-ol) prop-2-yn-1-ol (Table 1and 2- 1f)

Colorless solid, mp. 68-70 °C ¹H-NMR (CDCl₃, TMS, 400 MHz) $\delta_{\rm H}$ = 7.60 (t, *J* = 7.5 Hz, 1H). 7.50 (d, *J* = 8 Hz, 1H), 7.44 (d, *J* = 7.4 Hz, 1H), 4.59 (s, 2H), (Figure 13) ¹³C NMR (CDCl₃, TMS,100 MHz) $\delta_{\rm C}$ = 143.5. 141.9, 138.8, 128.0, 126.1, 89.9, 83.6, 51.4 IR: 3361, 3102, 3052, 1160, 1123, 901, 801, 771, 604 cm ⁻¹ (Figure 14) HRMS [M+H]⁺: Cal.209.9554, Obs. 209.9567 (C₈H₅NOBr)

3,3'-(pyridine-2,6-diyl)diprop- yn-1-ol (Table 1 and 2, 1g)

Colorless crystalline solid, mp, 120-124 °C ¹H-NMR (CDCl₃, TMS, 400 MHz) $\delta_{\rm H}$ = 7.64 (t, *J* = 7.8 Hz, 1H), 7.36 (d, *J* = 7.8 Hz, 2H), 4.96 (t, *J* = 5.9 Hz, 2H), 4.35 (d, *J* =6.3 Hz, 4H) (Figure 15) ¹³C NMR (CDCl₃, TMS, 100 MHz) $\delta_{\rm C}$ = 142.5, 136.1, 125.5, 88.8, 82.7, 49.7 (Figure 16) IR : 3341, 3138, 2858, 2234, 1578, 1562, 1445, 1346, 1251, 1223, 1163, 1085,1057, 1030, 1011, 996, 978, 947, 805, 732 cm⁻¹ HRMS [M+H]⁺: Cal.188.0712, Obs. 188.0712 (C₁₁H₁₀NO₂) (Figure 17)

3,3'-(1,4-Phenylene)diprop-2-yn-1-ol (Table 1 and 2, 1h) (Ye, *et. al.*, 2004)

Yellow colour solid, mp, 125-129 °C ¹H-NMR (CDCl₃, TMS, 400 MHz) $\Box \delta_H = 7.37-7.30 \text{ (m, 4H)}$, 4.42-4.29 (m, 4H), 4.00 (bs, 2H) ¹³C NMR(CDCl₃, TMS, 100 MHz) $\Box \delta_C = 131.5$, 122.1, 90.8, 83.8, 50.0 IR: 3268, 2903, 2241, 1495, 1421, 1406, 1355, 1312, 1268, 1257, 1222, 1104, 1024, 994, 947, 837, 637 cm⁻¹ HRMS [M+H]⁺: Calc. 209.0578, Obs. 209.0584 (C₁₂H₁₀O₂Na)

3-(4-methoxyphenyl)prop-2-yn-1-ol (Table 1 and 2, entry 1i) (Nowak-Krol et. al., 2011)

Synthesis of 3-(7-nitro-9H-fluoren-2-yl)prop-2-yn-1-ol (Table 1, entry 1j)

(i) 2-iodo-7-nitro-9H-fluorene (Marhevka *et al.*, 1985) (Table 2, Entry 5)

A mixture of 2-nitro fluorene 1.6 g (7.5 mmol), glacial acetic acid (50 mL) and iodine 0.93 g (3.5 mmol) were stirred at room temperature for 10 minutes. To the reaction mixture was added conc. H_2SO_4 (5 mL), sodium nitrate 0.55g (7.5 mmol) and refluxed for 30 min. The crude reaction mixture was poured into 100 g of ice, and the yellow solid was collected by filtration. The crude reaction mixture was recrystalized from glacial acetic acid to afford light yellow color solid in 45% (1.12 g) yield.

Solid, mp. 240-245 °C (reported 240-245 °C) ¹H NMR (CDCl₃, TMS, 400 MHz) $\delta_{\rm H} = 8.38$ -7.43 (m, 6H), 4.03 (s, 2H)

(ii) 3-(7-nitro-9H-fluoren-2-yl)prop-2-yn-1-ol (Table 1, entry 1j) (Sonogashira et al., 1975)

A mixture of bis(triphenylphosphine)-palladium(II)chloride (35 mg, 0.05 mmol),

2-iodo-7-nitro-9H-fluorene (505.5 mg, 1.5 mmol), copper iodide (20 mg, 0.1 mmol), dry triethylamine (20 mL), dry THF (20 mL) and propargylic alcohol (140 μ L, 2.5 mmol) was stirred under an argon atmosphere. The mixture was stirred for 12 h and then filtered through celite pad, solvent was distilled under reduced pressure. The residue was purified by column chromatography using CHCl₃ to give yellow color crystalline solid **1j** in 59% yield.

Yellow color solid, mp: 200-205 °C.

¹H NMR (400 MHz, TMS, DMSO-D₆,) $\delta_{\rm H}$ = 8.39-7.46 (m, 6H), 4.38 (s, 2H), 4.02 (s, 2H), 3.39 (bs, 1H) (Figure 18)

¹³C NMR (400 MHz, TMS, CDCl₃) $\delta_{\rm C} = 145.3$, 144.9, 143.2, 142.6, 137.4, 129.0, 126.5, 121.4, 121.3, 119.8, 118.9, 118.6, 89.0, 82.3, 48.3, 34.9 (Figure 19)

IR (KBr) $v = 3485, 2927, 2856, 2216, 2241, 1619, 1587, 1508 \text{ cm}^{-1}$

HRMS [M+H]⁺: Calc. 266.0817, Obs. 266.0812 (C₁₆H₁₁NO₃) (Figure 20)

Synthesis of 3-(9H-fluoren-2-yl)prop-2-yn-1-ol (Table 1, entry 1k)

(i) **2-iodo-9H-fluorene** (Lee *et al.*, 2001)

Fluorene 2g (12 mmol) was dissolved in 20 mL of boiling solvent (CH₃COOH : H_2O : $H_2SO_4 = 16 : 3 : 0.1$) (50 mL) with mechanical stirrer, followed by cooling to 60-65 °C, added periodic acid dihydrate (0.46 g, 2 mmol) and iodine 1.02 g (4 mmol). After 4 h the elemental iodine was almost disappeared and precipitate was formed. Upon cooling, the pale yellow solid was collected by filtration and washed with 2N aqueous Na₂CO₃ and water. The crude product was recrystallized from hexane to give a white crystalline solid in 2.14 g, 61%.

2-iodo-9H-fluorene

Solid, mp : 122-127 °C, reported 120-121 °C (Lee *et al.*, 2001) ¹H NMR (CDCl₃, TMS, 400 MHz) $\delta_{\rm H}$ = 7.88-7.31 (m, 7H), 3.88 (s, 2H) (9H-fluoren-2-yl)prop-2-yn-1-ol 1k (Sonogashira et al., 1975)

Solid, mp: 148-150 °C

¹H NMR (400 MHz, TMS, CDCl₃) $\delta_{\rm H}$ = 7.78-7.30 (m, 7H), 4.53 (s, 2H), 3.88 (s, 2H) (Figure 21) ¹³C NMR (400 MHz, TMS,CDCl₃) $\delta_{\rm C}$ = 143.5, 143.1, 142.1, 141.0, 130.5, 127.2, 128.2, 126.9, 125.07, 120.5, 120.2, 119.7, 87.1, 86.4, 51.8, 29.7 (Figure 22)

IR (neat) v = 3335, 3045, 2903, 2219, 1485, 1450, 1419, 1393, 1340, 1220, 1194, 1176, 1150, 1020, 996 cm⁻¹

HRMS [M+Na]⁺: Calc. 243.0786, Obs. 243.0787 (C₁₆H₁₂O Na) (Figure 23)

Synthesis of 1-ethoxy-1-hydroxy-4-phenylbut-3-yn-2-one (Table 1, entry 12, 1i) (Tanaka *et al.*, 2007)

An oven-dried 50 mL two neck round bottom flask equipped with a magnetic stirrer bar and a teflon stopcock was evacuated while hot and allowed to cool under argon. The round bottom flask was charged in order with CuI (10.1 mg, 0.05 mmol), triethylamine (0.28 mL, 2 mmol), and THF (5 mL). Once a colorless clear solution formed, the alkyne (1 mmol) and monooxalyl chloride (2 mmol) were added and the reaction was allowed to proceed at room temperature. When the reaction was complete, saturated aqueous NaHCO₃ (5 mL) and diethyl ether (20 mL) were added. The reaction system was allowed to partition, and the organic phase was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel chromatography to give in 85% yield.

Pale yellow liquid ¹H NMR (400 MHz, TMS, CDCl₃) $\delta_{\rm H}$ = 7.46 (dd, *J* = 7.6, 1.6 Hz, 2H), 7.34-7.31 (m, 3H), 5.06 (s, 1H), 4.36 (q, *J* = 7.2 Hz, 2H), 1.36 (t, *J* = 7.2, 3H) ¹³CNMR (100 MHz, TMS, CDCl3) $\delta_{\rm C}$ = 170.3, 131.8, 128.8, 128.2, 121.8, 85.3, 84.2, 62.8, 61.9, 14.0

Figure 1: ¹H NMR spectrum of compound 2f in CDCl₃

Figure 2: ¹³CNMR spectrum of compound 2f in CDCl₃

Figure 3 HRMS spectrum of compound 2f

Figure 4: ¹H NMR spectrum of compound 2g in CDCl₃

Figure 5: ¹³C NMR spectrum of compound **2g** in CDCl₃

Figure 6: ¹H NMR spectrum of compound **2h** in CDCl₃

Figure 7: ¹³C NMR spectrum of compound **2h** in CDCl₃

Figure 8: ¹H NMR spectrum of compound 2j in CDCl₃

Figure 9: ¹³C NMR spectrum of compound 2j in CDCl₃

Figure 10: ¹H NMR spectrum of compound 2k in CDCl₃

Figure 11¹³C NMR spectrum of compound 2k in CDCl₃

Figure 12 HRMS spectrum of compound 2k

Figure 13¹H NMR spectrum of compound 1f in CDCl₃

Figure 14 ¹³C NMR spectrums of compound 7d in CDCl₃

Figure 15¹H NMR spectrum of compound 1g in CDCl₃

Figure 16¹³C NMR of compound 1g in CDCl₃

Figure 17 HRMS spectrum of compound 1g

Figure 18¹H NMR spectrums of 1j in CDCl₃

Figure 19¹³C NMR spectrum of compound 1j in CDCl₃

Figure 20¹³C NMR spectrum of compound 1j in CDCl₃

Figure 21 ¹H NMR spectrum of compound 1k in CDCl₃

Figure 22 ¹³C NMR spectrum of compound 1k in CDCl₃

Figure 23 HRMS spectrum of compound 1k

References

- 1. Liu, J.; Xie, X.; Ma, Synthesis 2012, 44, 1569
- 2. Y. Maeda, N. Kakiuchi, S. Matsumura, T. Nishimura, T.Ka-wamura, S. Uemura, J. Org. Chem. 2002, 67, 6718.
- 3. F. Ye, A. Orita, J. Yaruva, T. Hamada, J. Otera, Chem. Lett. 2004, 528.
- A. Nowak-Król, B. Koszarna, S. Y. Yoo, J. Chromiński, M. K. Węcławski, C-H. Lee, D. T. Gryko, J. Org. Chem. 2011, 76, 2627.
- 5. M. Guo, D. Li, Z. Zhang, J. Org. Chem. 2000, 55, 462.
- 6. K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett. 1975, 16, 4467.
- 7. V. C. Marhevka, N. A. Ebner, R. D. Sehon, P. E. Hanna, J. Med. Chem., 1985, 28, 24.
- D. Lee, S. A. Long, J. H. Murray, J. L. Adams, M. E. Nuttall, D. P. Nadeau, K. Kikly, J. D. Winkler, C. M. Sung, M. D. Ryan, M. A. Levy, P. M. Keller and W. E. DeWolf, *J. Med. Chem*, 2001, 44, 2015.
- 9. K. Tanaka, T. Shoji, M. Hirano, Eur. J. Org. Chem. 2007, 2687.
- 10. S. K. Hanson, R. Wu, L. A. P. Silks, Org. Lett. 2011, 13, 1908.