Supporting Information

Carbazole Based Linear Conjugated Molecules: Structure Property Relationship and Device Properties

Vandana Bhalla, *^a Gopal Singh,^a Manoj Kumar, ^{*a} Charan Singh^b, Madhu Rawat^b and R. S.

Anand^b

a Department of Chemistry, UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India

b Department of Electrical Engineering, Indian Institute of Technology, Kanpur 208016,

India

mksharmaa@yahoo.co.in; vanmanan@yahoo.co.in

Conte	ent	Page No.
1.	Normalised absorption spectra of 1 in different solvents	S2
2.	Normalised emission spectra of 1 in different solvents	S2
3.	Normalised absorption of 2 in different solvents	S 3
4.	Normalised emission spectra of 2 in different solvents	S 3
5.	Normalised absorption spectra of 3 in different solvents	S4
6.	Normalised emission spectra of 3 in different solvents	S4
7.	Normalised absorption spectra of 4 in different solvents	S5
8.	Normalised emission spectra of 4 in different solvents	S5
9.	Normalised absorption spectra of 5 in different solvents	S 6
10	Normalised emission spectra of 5 in different solvents	S 6
11	. Fluorescence spectra of 1 - 5 in thin Film	S 7
12	2. Cyclic voltammetric studies of 1 - 5	S7-S10
13	Electroluminescence spectra of device of 4	S10
14. ILV characteristics of 3 and 5		S10-S11
15	5. ¹ H NMR spectrum of 2 - 5	S12-S15
16	5. ¹³ C NMR spectrum of 2 - 5	S16-S29
17	. Mass spectrum of 2 - 5	S20-S23
18	B. HPLC data of $2-5$	S24-S25

Figure S1. Normalized absorption spectra of compound 1 in different solvents

Figure S2. Normalized fluorescence spectra of compound 1 ($\lambda_{ex} = \lambda_{max}$) in different solvents

Figure S3. Normalized absorption spectra of compound 2 in different solvents

Figure S4. Normalized Fluorescence spectra of compound 2 ($\lambda_{ex} = \lambda_{max}$) in different solvents

Figure S5. Normalized absorption spectra of compound 3 in different solvents

Figure S6. Normalized Fluorescence spectra of compound 3 ($\lambda_{ex} = \lambda_{max}$) in different solvents

Figure S7. Normalized absorption spectra of compound 4 in different solvents

Figure S8. Normalized Fluorescence spectra of compound 4 ($\lambda_{ex} = \lambda_{max}$) in different solvents

Figure S9. Normalized absorption spectra of compound G5 in different

Figure S10. Normalized Fluorescence spectra of compound 5 ($\lambda_{ex} = \lambda_{max}$) in different solvents

Figure S11. Normalised fluorescence spectra of 1 - 5 in thin films (λ_{ex} of 1 = 301 nm, 2 = 298 nm, 3 = 329 nm, 4 = 345 nm, and 5 = 358 nm)

Figure S12. Repeated cyclic voltammograms of 1 in DCM at 50mV/sec. (10 cycles)

Figure S13. Repeated cyclic voltammograms of 2 in DCM at 50mV/sec. (5 cycles)

Figure S14. Repeated cyclic voltammograms of 3 in DCM at 50mV/sec. (5 cycles)

Figure S15. Repeated cyclic voltammograms of 4 in DCM at 50mV/sec. (5 cycles)

Figure S16. Repeated cyclic voltammograms of 5 in DCM at 50mV/sec.(5 cycles)

FigureS17. ElectrolumiWescence Spectra of device of 4

Voltage (V) Figure S18. ILV characteristics of device of 3

Figure S19. ILV characteristics of device of 5

¹H NMR of Compound 2 in CDCl₃

Figure S20. ¹H NMR of Compound 2 in CDCl₃

¹H NMR of Compound 3 in CDCl₃

Figure S21. ¹H NMR of Compound 3 in CDCl₃

¹H NMR of Compound 4 in CDCl₃

Figure S22. ¹H NMR of Compound 4 in CDCl₃

¹H NMR of Compound 5 in CDCl₃

Figure S23. ¹H NMR of Compound 5 in CDCl₃

¹³C NMR of Compound 2 in CDCl₃

Figure S24. ¹³C NMR of Compound 2 in CDCl₃

¹³C NMR of Compound 3 in CDCl₃

Figure S25. ¹³C NMR of Compound 3 in CDCl₃

¹³C NMR of Compound 4 in CDCl₃

Figure S26. ¹³C NMR of Compound 4 in CDCl₃

¹³C NMR of Compound 5 in CDCl₃

Figure S27. ¹³C NMR of Compound 5 in CDCl₃

Mass Spectrum of Compound 2

Figure S28. Mass Spectrum of Compound 2

Figure S29. Mass Spectrum of Compound 3

Mass Spectrum of Compound 4

Figure S30. Mass Spectrum of Compound 4

Mass Spectrum of Compound 5

Figure S31. Mass Spectrum of Compound 5

HPLC data of compound 2

HPLC data of compound 3

Peak	Ret time	Area%
1	4.304	100.0000

HPLC data of compound 4

reak	Ket time	Alea%
1	4.261	100.0000

HPLC data of compound 5

Peak	Ret time	Area%
1	3.164	0.0936
2	5.503	99.9064