The effects of surface acidity on CO₂ adsorption over amine functionalized protonated titanate nanotubes

Yue Liu,^a Jie Liu,^a Weiyuan Yao,^a Wanglai Cen,^a Haiqiang Wang,^a Xiaole Weng^a and Zhongbiao

 $Wu^{*a,b}$

^a Department of Environmental Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, P.R. China. Fax: +86 0571 87953088; Tel: +86 571 88982863; E-mail: zbwu@zju.edu.cn

^b Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas
Pollution Control, Hangzhou 310058, P.R. China. Fax:+86 571 87953088; Tel: +86 571 88982863;
Emai: zbwu@zju.edu.cn

*Corresponding auther: zbwu@zju.edu.cn

sample	$\frac{S_{BET}}{(m^2/g)}^b$	V_t^c (cm ³ /g)	Inner pore diameter ^d (nm)	Average pore width ^e (nm)
As-synthesized PTNTs	320.4	1.07	4~6	13.3
MCM-41	661.2	0.91		3.9

Table S1 Textural properties of as-synthesized PTNTs and MCM-41^a

^a The characterization of nitrogen adsorption-desorption isotherms was obtained at 77 K under relative pressures ranging from 0.005 to 0.99 using Tristar II 3020 (V1.03) surface area and porosity measurement system (Micromeritics Inc. USA).

^b Specific surface area were calculated using the Brunauer-Emmett-Teller (BET) method based on the linear part of the BET surface area plot (P/P₀-0.06-0.20);

 c V_t was determined by the single point liquid nitrogen adsorption capacity at a relative pressure of P/P₀=0.974;

^d Inner pore diameter was determined by TEM images;

^e Adsorption average pore width (4V/A by BET).

Samples	amine capacity	CO ₂ adsorption amount	Adsorption heat
	(wt%)	(mmol/g)	(KJ/mol)
PEI-PTNTs	5	0.15	38.45
	10	0.34	40.35
	20	0.96	48.54
	30	1.69	61.50
	50	2.97	66.99

Table S2 The adsorption characteristics of PEI functionalized PTNTs with different loading

Figure S1. DRIFT spectra of NH₃ adsorption P25: (a): 0 min, (b) 1 min, (c) 5 min, (d) 30 min, (e) after purge for 60 min at 100 °C.

Figure S2. DRIFT spectra of NH₃ adsorption on MCM-41: (a): 0 min, (b) 1 min, (c) 5 min, (d) 30 min, (e) after purge for 60 min at 100 °C.

Figure S3. DRIFT spectra of the as-synthesized PTNTs (bottom) and PEI-PTNTs-30 (upper) when they exposed to CO₂ until adsorption equilibrium at 100 °C (red) and after purge in helium for 60 min (black): (a, b) PTNTs; (c, d) PEI-PTNTs-30.

Figure S4. TG-DSC plots of (a) TEPA-MCM-41-43 and (b) PEI (1800)-MCM-41-43.