# Azaindole-1,2,3-triazole coujugate as selective fluorometric sensor for dihydrogenphosphate

Kumaresh Ghosh<sup>\*a</sup>, Debasis Kar<sup>a</sup>, Soumen Joardar<sup>a</sup>, Debashis Sahu<sup>b,c</sup>, Bishwajit Ganguly<sup>\*b,c</sup>

<sup>a</sup>Department of Chemistry, University of Kalyani, Kalyani, Nadia-741235, India, Email: ghosh\_k2003@yahoo.co.in, <sup>b</sup>Computation and Simulation Unit(Analytical Discipline and Centralized Instrument Facility), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364002. <sup>c</sup>Academy of Scientific and Innovative Research; CSIR- Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364002, India.



Figure 1S. (a) Absorption and (b) emission spectra of 3 ( $c = 3.09 \times 10^{-5}$  M) in different solvents.



**Figure 2S.** Change in emission of (a) **1** ( $c = 3.23 \times 10^{-5} M$ ) and (b) **3** ( $c = 4.25 \times 10^{-5} M$ ) upon titration with DMSO in CH<sub>3</sub>CN containing 0.01%DMSO.



**Figure 3S.** Change in emission of (a) **1** ( $c = 3.25 \times 10^{-5}$ M) and (b) **3** ( $c = 3.09 \times 10^{-5}$  M) upon titration with CH<sub>3</sub>OH in CH<sub>3</sub>CN containing 0.01%DMSO.



**Figure 4S.** Change in fluorescence ratio of **1** ( $c = 4.52 \times 10^{-5}$  M) at 370 nm upon addition of 15 equiv. amounts of different guests in DMSO.



**Figure 5S.** Change in fluorescence ratio of **3** ( $c = 3.45 \times 10^{-5}$  M) at 370 nm upon addition of 15 equiv. amounts of different guests in DMSO.



**Figure 6S.** Change in emission of (a) **1** (c =  $4.52 \times 10^{-5}$  M) and (b) **3** (c =  $3.63 \times 10^{-5}$  M) when titrated with H<sub>2</sub>PO<sub>4</sub><sup>-</sup> (c =  $1 \times 10^{-3}$  M) in DMSO.



**Figure 7S**. Change in emission of **1** ( $c = 2.51 \times 10^{-5} \text{ M}$ ) upon addition of a) Cl<sup>-</sup>, b) Br<sup>-</sup>, c) F<sup>-</sup>, (d)  $\Gamma$ , e) HSO<sub>4</sub><sup>-</sup>, (f) HP<sub>2</sub>O<sub>7</sub><sup>-3-</sup>, (g)AcO<sup>-</sup>, (h) NO<sub>3</sub><sup>-</sup> in CH<sub>3</sub>CN containing 0.01% DMSO.



**Figure 8S.** Change in absorbance of 1 ( $c = 2.51 \times 10^{-5} \text{ M}$ ) upon addition of a) Cl<sup>-</sup>, b) Br<sup>-</sup>, c) F<sup>-</sup>, (d) I<sup>-</sup>, e) HSO<sub>4</sub><sup>-</sup>, (f) HP<sub>2</sub>O<sub>7</sub><sup>-3-</sup>, (g)AcO<sup>-</sup>, (h) NO<sub>3</sub><sup>-</sup> in CH<sub>3</sub>CN containing 0.01% DMSO.



**Figure 9S.** Photographs of color change of (a)  $\mathbf{1}(c = 2.5 \times 10^{-5} \text{ M})$  and with 15 equiv. amounts of (b)  $\text{HP}_2\text{O}_7^{-3-}$  ( $c = 1 \times 10^{-3} \text{ M}$ ) and (c)  $\text{H}_2\text{PO}_4^{--}$  ( $c = 1 \times 10^{-3} \text{ M}$ ) under UV illumination.



**Figure 10S.** Change in emission of receptor **2** ( $c = 2.21 \times 10^{-5}$  M) upon addition of 15 equiv. .amounts of H<sub>2</sub>PO<sub>4</sub><sup>-</sup> ( $c = 1 \times 10^{-3}$  M) in CH<sub>3</sub>CN containing 0.01% DMSO.



**Figure 11S.** Partial <sup>1</sup>H NMR (400 MHz) of **1** ( $c = 5.01 \times 10^{-3}$  M) in the absence (A) and presence of 1 equiv (B) and 2 equiv (C) amounts of tetrabutylammonium dihydrogenphosphate in d<sub>6</sub>-DMSO.



**Figure 12S**. Change in emission of **3** ( $c = 5.01 \times 10^{-5}$  M) upon addition of (a) Cl<sup>-</sup>, (b) Br<sup>-</sup>, (c) F<sup>-</sup>, (d) l<sup>-</sup>, (e) HSO<sub>4</sub><sup>-</sup>, (f) HP<sub>2</sub>O<sub>7</sub><sup>-3-</sup>, (g) AcO<sup>-</sup>, (h) NO<sub>3</sub><sup>-</sup> in CH<sub>3</sub>CN containing 0.01% DMSO.



**Figure 13S.** Change in absorbance of **3** ( $c = 5.01 \times 10^{-5}$  M) upon addition of (a) Cl<sup>-</sup>, (b) Br<sup>-</sup>, (c) F<sup>-</sup>, (d) I<sup>-</sup>, (e) HSO<sub>4</sub><sup>-</sup>, (f) HP<sub>2</sub>O<sub>7</sub><sup>-3-</sup>, (g)AcO<sup>-</sup>, (h) NO<sub>3</sub><sup>-</sup>, (i) H<sub>2</sub>PO<sub>4</sub><sup>-</sup> in CH<sub>3</sub>CN containing 0.01% DMSO.



**Figure 14S**. Nonlinear binding constant curve for tetrabutylammonium dihydrogenphosphate ( $c=1x10^{-3}M$ ) with receptor **1** ( $c=2.25x10^{-5}$  M) at 363 nm in CH<sub>3</sub>CN containing 0.01% DMSO.



**Figure 15S**. Nonlinear binding constant curves for (a) tetrabutylammonium hydrogenpyrophosphate (b) tetrabutyl ammonium dihydrogenphosphate, (c) tetrabutylammonium fluoride (c =  $1 \times 10^{-3}$  M) with receptor **3** (c =  $5.01 \times 10^{-5}$  M) at 366 nm in CH<sub>3</sub>CN containing 0.01% DMSO.



**Figure 16S.** PM6 optimized geometries of the (a) *anti*, (b) *syn* and (c)  $H_2PO_4^-$  complexed forms of **1**. Numerical values in the complex (c) indicate the hydrogen bond distances in Å and the *anti* form is stable by 3.01 kcal/mol over the *syn* form.

### <sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO)



<sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO)



#### HRMS



<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO)



Electronic Supplementary Material (ESI) for RSC Advances This journal is C The Royal Society of Chemistry 2013

<sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO)



#### HRMS



21

<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO)



Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

## <sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO)



Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

#### HRMS

